Show Your %%Data Stack%% Who’s Boss.

Sifflet’s platform is powered by AI to tackle the sheer volume and complexity of the modern data stack.

Sifflet dashboard features overview

Augmented Assistance

Let AI help you speed things up. Sifflet is designed to reduce tedious tasks - like generating metadata descriptions or correcting SQL - with the click of a button.

No Coding Skills Required

Not an engineer? Not a problem. Describe what kind of monitors you’d like and Sifflet takes care of the rest.

Smart Alerts

Sifflet uses AI to optimize monitoring coverage and avoid alert fatigue by sending you the right alerts at the right time.

ADAPT

%%Dynamic%% Monitors

Monitors that get smarter as they go.

  • AI that creates monitors based on your prompts
  • Monitoring that learns from historical and on-going data
  • Detects anomalies in real time, adapts to trends, and sends meaningful alerts
Sifflet dashboard features overview
ASSIST

Building Rich %%Metadata%%

Say goodbye to creating metadata manually.

  • AI-generated column and asset descriptions.
  • Automatic classification for the data in your fields.
Sifflet dashboard features overview

%%Easy%% Monitor Creation

Create monitors, monitor names and descriptions effortlessly.

  • Monitor configuration, title and description suggestions. 
  • SQL correction. 
  • Regex suggestions
  • Monitor of Monitoring Accuracy (MoMA) suggestions 
Sifflet dashboard features overview

Tame Your Stack. %%Scale Your Smarts.%%

Sifflet’s AI-powered features help you show your stack who’s boss. Augment your team’s capabilities and make data observability everyone’s business.

Data Users

Thanks to AI, there’s no need to wait for the data engineering team to adapt, create or fix a monitor. Your monitors can also adapt to changes in seasonal trends. 

Read more

Data Engineers

Sifflet’s AI helps reduce manual work on tedious, repetitive tasks and gives your data users self-serve tools instead of requiring engineering time.

Read more

Data Leaders

AI features that make your data engineers more efficient and your data users better able to take ownership of their data.

Read more

Scale isn't so %%scary%%.

Sifflet’s AI-powered features help you wrangle your stack, even as it scales. Augment your team's capabilities today to make data observability everyone’s business.

Talk to our Experts

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What exactly is data freshness, and why does it matter so much in data observability?
Data freshness refers to how current your data is relative to the real-world events it's meant to represent. In data observability, it's one of the most critical metrics because even accurate data can lead to poor decisions if it's outdated. Whether you're monitoring financial trades or patient records, stale data can have serious business consequences.
What role does MCP play in improving data quality monitoring?
MCP enables LLMs to access structured context like schema changes, validation rules, and logs, making it easier to detect and explain data quality issues. With tool calls and memory, agents can continuously monitor pipelines and proactively alert teams when data quality deteriorates. This supports better SLA compliance and more reliable data operations.
What is data observability and why is it important for modern data teams?
Data observability is the ability to monitor and understand the health of your data across the entire data stack. As data pipelines become more complex, having real-time visibility into where and why data issues occur helps teams maintain data reliability and trust. At Sifflet, we believe data observability is essential for proactive data quality monitoring and faster root cause analysis.
What makes Sifflet’s data lineage tracking stand out?
Sifflet offers one of the most advanced data lineage tracking capabilities out there. Think of it like a GPS for your data pipelines—it gives you full traceability, helps identify bottlenecks, and supports better pipeline orchestration visibility. It's a game-changer for data governance and optimization.
What role do tools like Apache Spark and dbt play in data transformation?
Apache Spark and dbt are powerful tools for managing different aspects of data transformation. Spark is great for large-scale, distributed processing, especially when working with complex transformations and high data volumes. dbt, on the other hand, brings software engineering best practices to SQL-based transformations, making it ideal for analytics engineering. Both tools benefit from integration with observability platforms to ensure transformation pipelines run smoothly and reliably.
What are the five technical pillars of data observability?
The five technical pillars are freshness, volume, schema, distribution, and lineage. These cover everything from whether your data is arriving on time to whether it still follows expected patterns. A strong observability tool like Sifflet monitors all five, providing real-time metrics and context so you can quickly detect and resolve issues before they cause downstream chaos.
Why is data observability important for business outcomes?
Data observability helps align technical metrics with strategic business goals. By monitoring real-time metrics and enabling root cause analysis, teams can quickly detect and resolve data issues, reducing downtime and improving decision-making. It’s not just about the data, it’s about the impact that data has on your business.
Why are data consumers becoming more involved in observability decisions?
We’re seeing a big shift where data consumers—like analysts and business users—are finally getting a seat at the table. That’s because data observability impacts everyone, not just engineers. When trust in data is operationalized, it boosts confidence across the business and turns data teams into value creators.