Show Your %%Data Stack%% Who’s Boss.

Sifflet’s platform is powered by AI to tackle the sheer volume and complexity of the modern data stack.

Sifflet dashboard features overview

Augmented Assistance

Let AI help you speed things up. Sifflet is designed to reduce tedious tasks - like generating metadata descriptions or correcting SQL - with the click of a button.

No Coding Skills Required

Not an engineer? Not a problem. Describe what kind of monitors you’d like and Sifflet takes care of the rest.

Smart Alerts

Sifflet uses AI to optimize monitoring coverage and avoid alert fatigue by sending you the right alerts at the right time.

ADAPT

%%Dynamic%% Monitors

Monitors that get smarter as they go.

  • AI that creates monitors based on your prompts
  • Monitoring that learns from historical and on-going data
  • Detects anomalies in real time, adapts to trends, and sends meaningful alerts
Sifflet dashboard features overview
ASSIST

Building Rich %%Metadata%%

Say goodbye to creating metadata manually.

  • AI-generated column and asset descriptions.
  • Automatic classification for the data in your fields.
Sifflet dashboard features overview

%%Easy%% Monitor Creation

Create monitors, monitor names and descriptions effortlessly.

  • Monitor configuration, title and description suggestions. 
  • SQL correction. 
  • Regex suggestions
  • Monitor of Monitoring Accuracy (MoMA) suggestions 
Sifflet dashboard features overview

Tame Your Stack. %%Scale Your Smarts.%%

Sifflet’s AI-powered features help you show your stack who’s boss. Augment your team’s capabilities and make data observability everyone’s business.

Data Users

Thanks to AI, there’s no need to wait for the data engineering team to adapt, create or fix a monitor. Your monitors can also adapt to changes in seasonal trends. 

Read more

Data Engineers

Sifflet’s AI helps reduce manual work on tedious, repetitive tasks and gives your data users self-serve tools instead of requiring engineering time.

Read more

Data Leaders

AI features that make your data engineers more efficient and your data users better able to take ownership of their data.

Read more

Scale isn't so %%scary%%.

Sifflet’s AI-powered features help you wrangle your stack, even as it scales. Augment your team's capabilities today to make data observability everyone’s business.

Talk to our Experts

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How can organizations create a culture that supports data observability?
Fostering a data-driven culture starts with education and collaboration. Salma recommends training programs that boost data literacy and initiatives that involve all data stakeholders. This shared responsibility approach ensures better data governance and more effective data quality monitoring.
Why should organizations shift from firefighting to fire prevention in their data operations?
Shifting to fire prevention means proactively addressing data health issues before they impact users. By leveraging data lineage and observability tools, teams can perform impact assessments, monitor data quality, and implement preventive strategies that reduce downtime and improve SLA compliance.
How is Sifflet using AI to improve data observability?
We're leveraging AI to make data observability smarter and more efficient. Our AI agent automates monitor creation and provides actionable insights for anomaly detection and root cause analysis. It's all about reducing manual effort while boosting data reliability at scale.
What role does data quality monitoring play in a successful data management strategy?
Data quality monitoring is essential for maintaining the integrity of your data assets. It helps catch issues like missing values, inconsistencies, and outdated information before they impact business decisions. Combined with data observability, it ensures that your data catalog reflects trustworthy, high-quality data across the pipeline.
What role does data lineage tracking play in storage observability?
Data lineage tracking is essential for understanding how data flows from storage to dashboards. When something breaks, Sifflet helps you trace it back to the storage layer, whether it's a corrupted file in S3 or a schema drift in MongoDB. This visibility is critical for root cause analysis and ensuring data reliability across your pipelines.
How does Sifflet help reduce alert fatigue in data teams?
Great question! Sifflet tackles alert fatigue by using AI-native monitoring that understands business context. Instead of flooding teams with false positives, it prioritizes alerts based on downstream impact. This means your team focuses on real issues, improving trust in your observability tools and saving valuable engineering time.
How does Sifflet help with root cause analysis in Firebolt environments?
Sifflet makes root cause analysis easy by providing complete data lineage tracking for your Firebolt assets. You can trace issues back to their source, whether it's an upstream dbt model or a downstream Looker dashboard, all within a single platform.
Why is data observability important in a modern data stack?
Data observability is crucial because it ensures your data is reliable, trustworthy, and ready for decision-making. It sits at the top of the modern data stack and helps teams detect issues like data drift, schema changes, or freshness problems before they impact downstream analytics. A strong observability platform like Sifflet gives you peace of mind and helps maintain data quality across all layers.