Show Your %%Data Stack%% Who’s Boss.

Sifflet’s platform is powered by AI to tackle the sheer volume and complexity of the modern data stack.

Sifflet dashboard features overview

Augmented Assistance

Let AI help you speed things up. Sifflet is designed to reduce tedious tasks - like generating metadata descriptions or correcting SQL - with the click of a button.

No Coding Skills Required

Not an engineer? Not a problem. Describe what kind of monitors you’d like and Sifflet takes care of the rest.

Smart Alerts

Sifflet uses AI to optimize monitoring coverage and avoid alert fatigue by sending you the right alerts at the right time.

ADAPT

%%Dynamic%% Monitors

Monitors that get smarter as they go.

  • AI that creates monitors based on your prompts
  • Monitoring that learns from historical and on-going data
  • Detects anomalies in real time, adapts to trends, and sends meaningful alerts
Sifflet dashboard features overview
ASSIST

Building Rich %%Metadata%%

Say goodbye to creating metadata manually.

  • AI-generated column and asset descriptions.
  • Automatic classification for the data in your fields.
Sifflet dashboard features overview

%%Easy%% Monitor Creation

Create monitors, monitor names and descriptions effortlessly.

  • Monitor configuration, title and description suggestions. 
  • SQL correction. 
  • Regex suggestions
  • Monitor of Monitoring Accuracy (MoMA) suggestions 
Sifflet dashboard features overview

Tame Your Stack. %%Scale Your Smarts.%%

Sifflet’s AI-powered features help you show your stack who’s boss. Augment your team’s capabilities and make data observability everyone’s business.

Data Users

Thanks to AI, there’s no need to wait for the data engineering team to adapt, create or fix a monitor. Your monitors can also adapt to changes in seasonal trends. 

Read more

Data Engineers

Sifflet’s AI helps reduce manual work on tedious, repetitive tasks and gives your data users self-serve tools instead of requiring engineering time.

Read more

Data Leaders

AI features that make your data engineers more efficient and your data users better able to take ownership of their data.

Read more

Scale isn't so %%scary%%.

Sifflet’s AI-powered features help you wrangle your stack, even as it scales. Augment your team's capabilities today to make data observability everyone’s business.

Talk to our Experts

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How did Carrefour improve data reliability across its global operations?
Carrefour enhanced data reliability by adopting Sifflet's AI-augmented data observability platform. This allowed them to implement over 3,000 automated data quality checks and monitor more than 1,000 core business tables, ensuring consistent and trustworthy data across teams.
What’s the difference between a data catalog and a storage platform in observability?
A great distinction! Storage platforms hold your actual data, while a data catalog helps you understand what that data means. Sifflet connects both, so when we detect an anomaly, the catalog tells you what business process is affected and who should be notified. It’s how we turn raw telemetry into actionable insights for better incident response automation and SLA compliance.
What are Sentinel, Sage, and Forge, and how do they enhance data observability?
Sentinel, Sage, and Forge are Sifflet’s new AI agents designed to supercharge your data observability efforts. Sentinel proactively recommends monitoring strategies, Sage accelerates root cause analysis by remembering system history, and Forge guides your team with actionable fixes. Together, they help teams reduce alert fatigue and improve data reliability at scale.
What’s the difference between technical and business data quality?
That's a great distinction to understand! Technical data quality focuses on things like accuracy, completeness, and consistency—basically, whether the data is structurally sound. Business data quality, on the other hand, asks if the data actually supports how your organization defines success. For example, a report might be technically correct but still misleading if it doesn’t reflect your current business model. A strong data governance framework helps align both dimensions.
What makes Sifflet different from other data observability tools?
Sifflet stands out as a metadata control plane that connects technical reliability with business context. Unlike point solutions, it offers AI-native automation, full data lineage tracking, and cross-functional accessibility, making it ideal for organizations that need to scale trust in their data across teams.
Is data governance more about culture or tools?
It's a mix of both, but culture plays a big role. As Dan Power puts it, 'culture eats strategy for breakfast.' Even the best observability tools won't succeed without enterprise-wide data literacy and buy-in. That’s why training, user-friendly platforms, and fostering collaboration are just as important as the technology stack you choose.
Why is the traditional approach to data observability no longer enough?
Great question! The old playbook for data observability focused heavily on technical infrastructure and treated data like servers — if the pipeline ran and the schema looked fine, the data was assumed to be trustworthy. But today, data is a strategic asset that powers business decisions, AI models, and customer experiences. At Sifflet, we believe modern observability platforms must go beyond uptime and freshness checks to provide context-aware insights that reflect real business impact.
How does schema evolution impact batch and streaming data observability?
Schema evolution can introduce unexpected fields or data type changes that disrupt both batch and streaming data workflows. With proper data pipeline monitoring and observability tools, you can track these changes in real time and ensure your systems adapt without losing data quality or breaking downstream processes.