Shared Understanding. Ultimate Confidence. At Scale.
When everyone knows your data is systematically validated for quality, understands where it comes from and how it's transformed, and is aligned on freshness and SLAs, what’s not to trust?


Always Fresh. Always Validated.
No more explaining data discrepancies to the C-suite. Thanks to automatic and systematic validation, Sifflet ensures your data is always fresh and meets your quality requirements. Stakeholders know when data might be stale or interrupted, so they can make decisions with timely, accurate data.
- Automatically detect schema changes, null values, duplicates, or unexpected patterns that could comprise analysis.
- Set and monitor service-level agreements (SLAs) for critical data assets.
- Track when data was last updated and whether it meets freshness requirements

Understand Your Data, Inside and Out
Give data analysts and business users ultimate clarity. Sifflet helps teams understand their data across its whole lifecycle, and gives full context like business definitions, known limitations, and update frequencies, so everyone works from the same assumptions.
- Create transparency by helping users understand data pipelines, so they always know where data comes from and how it’s transformed.
- Develop shared understanding in data that prevents misinterpretation and builds confidence in analytics outputs.
- Quickly assess which downstream reports and dashboards are affected


Still have a question in mind ?
contact our service customers
Frequently asked questions
How does data observability support compliance with regulations like GDPR?
Data observability plays a key role in data governance by helping teams maintain accurate documentation, monitor data flows, and quickly detect anomalies. This proactive monitoring ensures that your data stays compliant with regulations like GDPR and HIPAA, reducing the risk of costly fines and audits.
Is this integration helpful for teams focused on data reliability and governance?
Yes, definitely! The Sifflet and Firebolt integration supports strong data governance and boosts data reliability by enabling data profiling, schema monitoring, and automated validation rules. This ensures your data remains trustworthy and compliant.
How does Sifflet’s revamped dbt integration improve data observability?
Great question! With our latest dbt integration update, we’ve unified dbt models and the datasets they generate into a single asset. This means you get richer context and better visibility across your data pipelines, making it easier to track data lineage, monitor data quality, and ensure SLA compliance all from one place.
Why is data observability becoming essential for modern data teams?
As data pipelines grow more complex, data observability provides the visibility needed to monitor and troubleshoot issues across the full stack. By adopting a robust observability platform, teams can detect anomalies, ensure SLA compliance, and maintain data reliability without relying on manual checks or reactive fixes.
What role does data lineage tracking play in storage observability?
Data lineage tracking is essential for understanding how data flows from storage to dashboards. When something breaks, Sifflet helps you trace it back to the storage layer, whether it's a corrupted file in S3 or a schema drift in MongoDB. This visibility is critical for root cause analysis and ensuring data reliability across your pipelines.
Why is smart alerting important in data observability?
Smart alerting helps your team focus on what really matters. Instead of flooding your Slack with every minor issue, a good observability tool prioritizes alerts based on business impact and data asset importance. This reduces alert fatigue and ensures the right people get notified at the right time. Look for platforms that offer customizable severity levels, real-time alerts, and integrations with your incident management tools like PagerDuty or email alerts.
How does Flow Stopper support root cause analysis and incident prevention?
Flow Stopper enables early anomaly detection and integrates with your orchestrator to halt execution when issues are found. This makes it easier to perform root cause analysis before problems escalate and helps prevent incidents that could affect business-critical dashboards or KPIs.
What is data volume and why is it so important to monitor?
Data volume refers to the quantity of data flowing through your pipelines. Monitoring it is critical because sudden drops, spikes, or duplicates can quietly break downstream logic and lead to incomplete analysis or compliance risks. With proper data volume monitoring in place, you can catch these anomalies early and ensure data reliability across your organization.