Shared Understanding. Ultimate Confidence. At Scale.
When everyone knows your data is systematically validated for quality, understands where it comes from and how it's transformed, and is aligned on freshness and SLAs, what’s not to trust?


Always Fresh. Always Validated.
No more explaining data discrepancies to the C-suite. Thanks to automatic and systematic validation, Sifflet ensures your data is always fresh and meets your quality requirements. Stakeholders know when data might be stale or interrupted, so they can make decisions with timely, accurate data.
- Automatically detect schema changes, null values, duplicates, or unexpected patterns that could comprise analysis.
- Set and monitor service-level agreements (SLAs) for critical data assets.
- Track when data was last updated and whether it meets freshness requirements

Understand Your Data, Inside and Out
Give data analysts and business users ultimate clarity. Sifflet helps teams understand their data across its whole lifecycle, and gives full context like business definitions, known limitations, and update frequencies, so everyone works from the same assumptions.
- Create transparency by helping users understand data pipelines, so they always know where data comes from and how it’s transformed.
- Develop shared understanding in data that prevents misinterpretation and builds confidence in analytics outputs.
- Quickly assess which downstream reports and dashboards are affected


Still have a question in mind ?
Contact Us
Frequently asked questions
How does data lineage tracking help with root cause analysis in data integration?
Data lineage tracking gives visibility into how data flows from source to destination, making it easier to pinpoint where issues originate. This is essential for root cause analysis, especially when dealing with complex integrations across multiple systems. At Sifflet, we see data lineage as a cornerstone of any observability platform.
How can I avoid breaking reports and dashboards during migration?
To prevent disruptions, it's essential to use data lineage tracking. This gives you visibility into how data flows through your systems, so you can assess downstream impacts before making changes. It’s a key part of data pipeline monitoring and helps maintain trust in your analytics.
Is there a networking opportunity with the Sifflet team at Big Data Paris?
Yes, we’re hosting an exclusive after-party at our booth on October 15! Come join us for great conversations, a champagne toast, and a chance to connect with data leaders who care about data governance, pipeline health, and building resilient systems.
What kinds of alerts can trigger incidents in ServiceNow through Sifflet?
You can trigger incidents from any Sifflet alert, including data freshness checks, schema changes, and pipeline failures. This makes it easier to maintain SLA compliance and improve overall data reliability across your observability platform.
What are some common reasons data freshness breaks down in a pipeline?
Freshness issues often start with delays in source systems, ingestion bottlenecks, slow transformation jobs, or even caching problems in dashboards. That's why a strong observability platform needs to monitor every stage of the pipeline, from ingestion latency to delivery, to ensure data reliability and timely decision-making.
Why is a data catalog essential for modern data teams?
A data catalog is critical because it helps teams find, understand, and trust their data. It centralizes metadata, making data assets searchable and understandable, which reduces duplication, speeds up analytics, and supports data governance. When paired with data observability tools, it becomes a powerful foundation for proactive data management.
What tools can help me monitor data consistency between old and new environments?
You can use data profiling and anomaly detection tools to compare datasets before and after migration. These features are often built into modern data observability platforms and help you validate that nothing critical was lost or changed during the move.
What should I consider when choosing a modern observability tool for my data stack?
When evaluating observability tools, consider factors like ease of setup, support for real-time metrics, data freshness checks, and integration with your existing stack. Look for platforms that offer strong data pipeline monitoring, business context in alerts, and cost transparency. Tools like Sifflet also provide fast time-to-value and support for both batch and streaming data observability.



















-p-500.png)
