Shared Understanding. Ultimate Confidence. At Scale.
When everyone knows your data is systematically validated for quality, understands where it comes from and how it's transformed, and is aligned on freshness and SLAs, what’s not to trust?


Always Fresh. Always Validated.
No more explaining data discrepancies to the C-suite. Thanks to automatic and systematic validation, Sifflet ensures your data is always fresh and meets your quality requirements. Stakeholders know when data might be stale or interrupted, so they can make decisions with timely, accurate data.
- Automatically detect schema changes, null values, duplicates, or unexpected patterns that could comprise analysis.
- Set and monitor service-level agreements (SLAs) for critical data assets.
- Track when data was last updated and whether it meets freshness requirements

Understand Your Data, Inside and Out
Give data analysts and business users ultimate clarity. Sifflet helps teams understand their data across its whole lifecycle, and gives full context like business definitions, known limitations, and update frequencies, so everyone works from the same assumptions.
- Create transparency by helping users understand data pipelines, so they always know where data comes from and how it’s transformed.
- Develop shared understanding in data that prevents misinterpretation and builds confidence in analytics outputs.
- Quickly assess which downstream reports and dashboards are affected


Still have a question in mind ?
Contact Us
Frequently asked questions
How does Sifflet support SLA compliance and proactive monitoring?
With real-time metrics and intelligent alerting, Sifflet helps ensure SLA compliance by detecting issues early and offering root cause analysis. Its proactive monitoring features, like dynamic thresholding and auto-remediation suggestions, keep your data pipelines healthy and responsive.
How has AI changed the way companies think about data quality monitoring?
AI has definitely raised the stakes. As Salma shared on the Joe Reis Show, executives are being asked to 'do AI,' but many still struggle with broken pipelines. That’s why data quality monitoring and robust data observability are now seen as prerequisites for scaling AI initiatives effectively.
Why is an observability layer essential in the modern data stack, according to Meero’s experience?
For Meero, having an observability layer like Sifflet was crucial to ensure end-to-end visibility of their data pipelines. It allowed them to proactively monitor data quality, reduce downtime, and maintain SLA compliance, making it an indispensable part of their modern data stack.
What kinds of data does Shippeo monitor to support real-time metrics?
Shippeo tracks critical operational data like order volume, GPS positions, and platform activity. With Sifflet, they monitor ingestion latency and data freshness to ensure that metrics powering dashboards and customer reports are always up to date.
Who should be responsible for managing data quality in an organization?
Data quality management works best when it's a shared responsibility. Data stewards often lead the charge by bridging business needs with technical implementation. Governance teams define standards and policies, engineering teams build the monitoring infrastructure, and business users provide critical domain expertise. This cross-functional collaboration ensures that quality issues are caught early and resolved in ways that truly support business outcomes.
How does reverse ETL fit into the modern data stack?
Reverse ETL is a game-changer for operational analytics. It moves data from your warehouse back into business tools like CRMs or marketing platforms. This enables teams across the organization to act on insights directly from the data warehouse. It’s a perfect example of how data integration has evolved to support autonomy and real-time metrics in decision-making.
How does data quality monitoring help improve data reliability?
Data quality monitoring is essential for maintaining trust in your data. A strong observability platform should offer features like anomaly detection, data profiling, and data validation rules. These tools help identify issues early, so you can fix them before they impact downstream analytics. It’s all about making sure your data is accurate, timely, and reliable.
What role does metadata play in a data observability platform?
Metadata provides context about your data, such as who created it, when it was modified, and how it's classified. In a data observability platform, strong metadata management enhances data discovery, supports compliance monitoring, and ensures consistent, high-quality data across systems.



















-p-500.png)
