Shared Understanding. Ultimate Confidence. At Scale.
When everyone knows your data is systematically validated for quality, understands where it comes from and how it's transformed, and is aligned on freshness and SLAs, what’s not to trust?


Always Fresh. Always Validated.
No more explaining data discrepancies to the C-suite. Thanks to automatic and systematic validation, Sifflet ensures your data is always fresh and meets your quality requirements. Stakeholders know when data might be stale or interrupted, so they can make decisions with timely, accurate data.
- Automatically detect schema changes, null values, duplicates, or unexpected patterns that could comprise analysis.
- Set and monitor service-level agreements (SLAs) for critical data assets.
- Track when data was last updated and whether it meets freshness requirements

Understand Your Data, Inside and Out
Give data analysts and business users ultimate clarity. Sifflet helps teams understand their data across its whole lifecycle, and gives full context like business definitions, known limitations, and update frequencies, so everyone works from the same assumptions.
- Create transparency by helping users understand data pipelines, so they always know where data comes from and how it’s transformed.
- Develop shared understanding in data that prevents misinterpretation and builds confidence in analytics outputs.
- Quickly assess which downstream reports and dashboards are affected


Still have a question in mind ?
Contact Us
Frequently asked questions
Can business users benefit from data observability too, or is it just for engineers?
Absolutely, business users benefit too! Sifflet's UI is built for both technical and non-technical teams. For example, our Chrome extension overlays on BI tools to show real-time metrics and data quality monitoring without needing to write SQL. It helps everyone from analysts to execs make decisions with confidence, knowing the data behind their dashboards is trustworthy.
What role does accessibility play in Sifflet’s UI design?
Accessibility is a core part of our design philosophy. We ensure that key indicators in our observability tools, such as data freshness checks or pipeline health statuses, are communicated using both color and iconography. This approach supports inclusive experiences for users with visual impairments, including color blindness.
What’s next for Sifflet’s metrics observability capabilities?
We’re expanding support to more BI and transformation tools beyond Looker, and enhancing our ML-based monitoring to group business metrics by domain. This will improve consistency and make it even easier for users to explore metrics across the semantic layer.
How do real-time alerts support SLA compliance?
Real-time alerts are crucial for staying on top of potential issues before they escalate. By setting up threshold-based alerts and receiving notifications through channels like Slack or email, teams can act quickly to resolve problems. This proactive approach helps maintain SLA compliance and keeps your data operations running smoothly.
Is data governance more about culture or tools?
It's a mix of both, but culture plays a big role. As Dan Power puts it, 'culture eats strategy for breakfast.' Even the best observability tools won't succeed without enterprise-wide data literacy and buy-in. That’s why training, user-friendly platforms, and fostering collaboration are just as important as the technology stack you choose.
Why is data observability important during the data integration process?
Data observability is key during data integration because it helps detect issues like schema changes or broken APIs early on. Without it, bad data can flow downstream, impacting analytics and decision-making. At Sifflet, we believe observability should start at the source to ensure data reliability across the whole pipeline.
What kind of visibility does a data observability platform provide?
A robust data observability platform like Sifflet gives you end-to-end visibility into your data ecosystem. This includes data freshness checks, schema changes, lineage tracking, and anomaly detection. It's like having a complete map of your data journey, helping you proactively manage quality and trust in your analytics.
How does Sifflet help scale dbt environments without compromising data quality?
Great question! Sifflet enhances your dbt environment by adding a robust data observability layer that enforces standards, monitors key metrics, and ensures data quality monitoring across thousands of models. With centralized metadata, automated monitors, and lineage tracking, Sifflet helps teams avoid the usual pitfalls of scaling like ownership ambiguity and technical debt.












-p-500.png)
