Shared Understanding. Ultimate Confidence. At Scale.

When everyone knows your data is systematically validated for quality, understands where it comes from and how it's transformed, and is aligned on freshness and SLAs, what’s not to trust?

Always Fresh. Always Validated.

No more explaining data discrepancies to the C-suite. Thanks to automatic and systematic validation, Sifflet ensures your data is always fresh and meets your quality requirements. Stakeholders know when data might be stale or interrupted, so they can make decisions with timely, accurate data.

  • Automatically detect schema changes, null values, duplicates, or unexpected patterns that could comprise analysis.
  • Set and monitor service-level agreements (SLAs) for critical data assets.
  • Track when data was last updated and whether it meets freshness requirements

Understand Your Data, Inside and Out

Give data analysts and business users ultimate clarity. Sifflet helps teams understand their data across its whole lifecycle, and gives full context like business definitions, known limitations, and update frequencies, so everyone works from the same assumptions.

  • Create transparency by helping users understand data pipelines, so they always know where data comes from and how it’s transformed. 
  • Develop shared understanding in data that prevents misinterpretation and builds confidence in analytics outputs.
  • Quickly assess which downstream reports and dashboards are affected

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

Can Sifflet detect anomalies in my data pipelines?
Yes, it can! Sifflet uses machine learning for anomaly detection, helping you catch unexpected changes in data volume or quality. You can even label anomalies to improve the model's accuracy over time, reducing alert fatigue and improving incident response automation.
What should I consider when choosing a data observability tool?
When selecting a data observability tool, consider your data stack, team size, and specific needs like anomaly detection, metrics collection, or schema registry integration. Whether you're looking for open source observability options or a full-featured commercial platform, make sure it supports your ecosystem and scales with your data operations.
How did Dailymotion use data observability to support their shift to a product-oriented data platform?
Dailymotion embedded data observability into their data ecosystem to ensure trust, reliability, and discoverability across teams. This shift allowed them to move from ad hoc data requests to delivering scalable, analytics-driven data products that empower both engineers and business users.
How does Sifflet help identify performance bottlenecks in dbt models?
Sifflet's dbt runs tab offers deep insights into model execution, cost, and runtime, making it easy to spot inefficiencies. You can also use historical performance data to set up custom dashboards and proactive monitors. This helps with capacity planning and ensures your data pipelines stay optimized and cost-effective.
How can data observability help companies stay GDPR compliant?
Great question! Data observability plays a key role in GDPR compliance by giving teams real-time visibility into where personal data lives, how it's being used, and whether it's being processed according to user consent. With an observability platform in place, you can track data lineage, monitor data quality, and quickly respond to deletion or access requests in a compliant way.
What is data observability and why is it important for modern data teams?
Data observability is the practice of monitoring data as it moves through your pipelines to detect, understand, and resolve issues proactively. It’s crucial because it helps data teams ensure data reliability, improve decision-making, and reduce the time spent firefighting data issues. With the growing complexity of data systems, having a robust observability platform is key to maintaining trust in your data.
What role does MCP play in improving incident response automation?
MCP is a game-changer for incident response automation. By allowing LLMs to interact with telemetry data, call remediation tools, and maintain context over time, MCP enables proactive monitoring and faster resolution. This aligns perfectly with Sifflet’s mission to reduce downtime and improve pipeline resilience.
What kinds of data does Shippeo monitor to support real-time metrics?
Shippeo tracks critical operational data like order volume, GPS positions, and platform activity. With Sifflet, they monitor ingestion latency and data freshness to ensure that metrics powering dashboards and customer reports are always up to date.