Shared Understanding. Ultimate Confidence. At Scale.

When everyone knows your data is systematically validated for quality, understands where it comes from and how it's transformed, and is aligned on freshness and SLAs, what’s not to trust?

Always Fresh. Always Validated.

No more explaining data discrepancies to the C-suite. Thanks to automatic and systematic validation, Sifflet ensures your data is always fresh and meets your quality requirements. Stakeholders know when data might be stale or interrupted, so they can make decisions with timely, accurate data.

  • Automatically detect schema changes, null values, duplicates, or unexpected patterns that could comprise analysis.
  • Set and monitor service-level agreements (SLAs) for critical data assets.
  • Track when data was last updated and whether it meets freshness requirements

Understand Your Data, Inside and Out

Give data analysts and business users ultimate clarity. Sifflet helps teams understand their data across its whole lifecycle, and gives full context like business definitions, known limitations, and update frequencies, so everyone works from the same assumptions.

  • Create transparency by helping users understand data pipelines, so they always know where data comes from and how it’s transformed. 
  • Develop shared understanding in data that prevents misinterpretation and builds confidence in analytics outputs.
  • Quickly assess which downstream reports and dashboards are affected

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

How do JOIN strategies affect query execution and data observability?
JOINs can be very resource-intensive if not used correctly. Choosing the right JOIN type and placing conditions in the ON clause helps reduce unnecessary data processing, which is key for effective data observability and real-time metrics tracking.
How does data observability help detect data volume issues?
Data observability provides visibility into your pipelines by tracking key metrics like row counts, duplicates, and ingestion patterns. It acts as an early warning system, helping teams catch volume anomalies before they affect dashboards or ML models. By using a robust observability platform, you can ensure that your data is consistently complete and trustworthy.
How can data observability help with SLA compliance and incident management?
Data observability plays a huge role in SLA compliance by enabling real-time alerts and proactive monitoring of data freshness, completeness, and accuracy. When issues occur, observability tools help teams quickly perform root cause analysis and understand downstream impacts, speeding up incident response and reducing downtime. This makes it easier to meet service level agreements and maintain stakeholder trust.
How can data observability support a strong data governance strategy?
Data observability complements data governance by continuously monitoring data pipelines for issues like data drift, freshness problems, or anomalies. With an observability platform like Sifflet, teams can proactively detect and resolve data quality issues, enforce data validation rules, and gain visibility into pipeline health. This real-time insight helps governance policies work in practice, not just on paper.
What trends in data observability should we watch for in 2025?
In 2025, expect to see more focus on AI-driven anomaly detection, dynamic thresholding, and predictive analytics monitoring. Staying ahead means experimenting with new observability tools, engaging with peers, and continuously aligning your data strategy with evolving business needs.
Why is aligning data initiatives with business objectives important for Etam?
At Etam, every data project begins with the question, 'How does this help us reach our OKRs?' This alignment ensures that data initiatives are directly tied to business impact, improving sponsorship and fostering collaboration across departments. It's a great example of business-aligned data strategy in action.
Why is standardization important when scaling dbt, and how does Sifflet support it?
Standardization is key to maintaining control as your dbt project grows. Sifflet supports this by centralizing metadata and enabling compliance monitoring through features like data contracts enforcement and asset tagging. This ensures consistency, improves data governance, and reduces the risk of data drift or unmonitored critical assets.
Is it hard to set up the Sifflet and ServiceNow integration?
Not at all! It only takes a few minutes to get started. Just follow our step-by-step integration guide, and you’ll be ready to connect your data observability alerts directly to ServiceNow in no time.