Data Leader

Transform your data and analytics strategy and pave the way for AI by upleveling data quality, trust, reliability and overall team efficiency.

Data Quality and Trust

Sifflet makes it possible to establish trust in data across your organization thanks to real time monitoring of data quality, completeness, and accuracy.

Operational Efficiency

Increase your team’s operational efficiency. Sifflet reduces the time your data teams spend on manual quality checks and troubleshooting. It also enables proactive issue resolution before problems cause downstream systems.

Risk and Compliance Management

Manage data risk and compliance. Sifflet helps you document and monitor data access patterns and potential security risks.

Drive Innovation and Enable AI

Sifflet’s data observability platform delivers the performance you need to keep data quality and reliability at peak, paving the way for game-changing digital capabilities and products.

Augment Your Team’s Productivity and Effectiveness

Data engineers, data analysts and data scientists are critical to your business’s most strategic work. Sifflet augments their productivity by giving them back hundreds of hours spent on mundane reliability or accuracy tasks. Everyone’s more effective with data observability.

See Value From Day One

Sifflet connects to hundreds of tools already in your stack and offers out of the box monitors and tooling so you can start seeing value from day one.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How does MCP improve root cause analysis in modern data systems?
MCP empowers LLMs to use structured inputs like logs and pipeline metadata, making it easier to trace issues across multiple steps. This structured interaction helps streamline root cause analysis, especially in complex environments where traditional observability tools might fall short. At Sifflet, we’re integrating MCP to enhance how our platform surfaces and explains data incidents.
Is this feature scalable for large datasets and multiple data assets?
Yes, it is! With Sifflet’s auto-coverage and observability tools, you can monitor distribution deviation at scale with just a few clicks. Whether you're working with batch data observability or streaming data monitoring, Sifflet has you covered with automated, scalable insights.
How does Sifflet support data quality monitoring at scale?
Sifflet makes data quality monitoring scalable with features like auto-coverage, which automatically generates monitors across your datasets. Whether you're working with Snowflake, BigQuery, or other platforms, you can quickly reach high monitoring coverage and get real-time alerts via Slack, email, or MS Teams to ensure data reliability.
What is the difference between data monitoring and data observability?
Great question! Data monitoring is like your car's dashboard—it alerts you when something goes wrong, like a failed pipeline or a missing dataset. Data observability, on the other hand, is like being the driver. It gives you a full understanding of how your data behaves, where it comes from, and how issues impact downstream systems. At Sifflet, we believe in going beyond alerts to deliver true data observability across your entire stack.
How does Sifflet support data quality monitoring for large organizations?
Sifflet is built to scale. It supports automated data quality monitoring across hundreds of assets, as seen with Carrefour Links monitoring over 800 data assets in 8+ countries. With dynamic thresholding, schema change detection, and real-time metrics, Sifflet ensures SLA compliance and consistent data reliability across complex ecosystems.
Where can I find Sifflet at Big Data LDN 2024?
You can find the Sifflet team at Booth Y640 during Big Data LDN on September 18-19. Stop by to learn more about our data observability platform and how we’re helping organizations like the BBC and Penguin Random House improve their data reliability.
What makes Sifflet stand out among the best data observability tools in 2025?
Great question! Sifflet shines because it treats data observability as both an engineering and a business challenge. Our platform offers full end-to-end coverage, strong business context, and a collaboration layer that helps teams resolve issues faster. Plus, with enterprise-grade security and scalability, Sifflet is built to grow with your data needs.
What types of metadata are captured in a modern data catalog?
Modern data catalogs capture four key types of metadata: technical (schemas, formats), business (definitions, KPIs), operational (usage patterns, SLA compliance), and governance (access controls, data classifications). These layers work together to support data quality monitoring and transparency in data pipelines.