Executives

Data Leader

Transform your data and analytics strategy and pave the way for AI by upleveling data quality, trust, reliability and overall team efficiency.

Data Quality and Trust

Sifflet makes it possible to establish trust in data across your organization thanks to real time monitoring of data quality, completeness, and accuracy.

Operational Efficiency

Increase your team’s operational efficiency. Sifflet reduces the time your data teams spend on manual quality checks and troubleshooting. It also enables proactive issue resolution before problems cause downstream systems.

Risk and Compliance Management

Manage data risk and compliance. Sifflet helps you document and monitor data access patterns and potential security risks.

Drive Innovation and Enable AI

Sifflet’s data observability platform delivers the performance you need to keep data quality and reliability at peak, paving the way for game-changing digital capabilities and products.

Augment Your Team’s Productivity and Effectiveness

Data engineers, data analysts and data scientists are critical to your business’s most strategic work. Sifflet augments their productivity by giving them back hundreds of hours spent on mundane reliability or accuracy tasks. Everyone’s more effective with data observability.

See Value From Day One

Sifflet connects to hundreds of tools already in your stack and offers out of the box monitors and tooling so you can start seeing value from day one.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

What’s next for Sifflet’s metrics observability capabilities?
We’re expanding support to more BI and transformation tools beyond Looker, and enhancing our ML-based monitoring to group business metrics by domain. This will improve consistency and make it even easier for users to explore metrics across the semantic layer.
What is data observability, and why is it important for companies like Hypebeast?
Data observability is the ability to understand the health, reliability, and quality of data across your ecosystem. For a data-driven company like Hypebeast, it helps ensure that insights are accurate and trustworthy, enabling better decision-making across teams.
How does Sifflet help with compliance monitoring and audit logging?
Sifflet is ISO 27001 certified and SOC 2 compliant, and we use a separate secret manager to handle credentials securely. This setup ensures a strong audit trail and tight access control, making compliance monitoring and audit logging seamless for your data teams.
Is Sifflet suitable for non-technical users who want to contribute to data quality?
Yes, and that’s one of the things we’re most excited about! Sifflet empowers non-technical users to define custom monitoring rules and participate in data quality efforts without needing to write dbt code. It’s all part of building a culture of shared responsibility around data governance and observability.
How does Sifflet help with data observability during the CI process?
Sifflet integrates directly with your CI pipelines on platforms like GitHub and GitLab to proactively surface issues before code is merged. By analyzing the impact of dbt model changes and running data quality monitors in testing environments, Sifflet ensures data reliability and minimizes production disruptions.
What’s new in Sifflet’s integration with dbt?
We’ve supercharged our dbt integration! Sifflet now offers deeper metadata visibility and powerful dbt impact analysis for both GitHub and GitLab. This helps you assess the downstream effects of model changes before deployment, boosting your confidence and control in data pipeline monitoring.
How does Sifflet use AI to enhance data observability?
Sifflet uses AI not just for buzzwords, but to genuinely improve your workflows. From AI-powered metadata generation to dynamic thresholding and intelligent anomaly detection, Sifflet helps teams automate data quality monitoring and make faster, smarter decisions based on real-time insights.
How does data observability improve incident response and SLA compliance?
With data observability, teams get real-time metrics and deep context around data issues. This means faster incident response and better SLA compliance. Sifflet’s observability platform helps you pinpoint root causes quickly, reducing downtime and giving stakeholders confidence in the reliability of your data.
Still have questions?