Big Data. %%Big Potential.%%

Sell data products that meet the most demanding standards of data reliability, quality and health.

Identify Opportunities

Monetizing data starts with identifying your highest potential data sets. Sifflet can highlight patterns in data usage and quality that suggest monetization potential and help you uncover data combinations that could create value.

  • Deep dive into patterns around data usage to identify high-value data sets through usage analytics
  • Determine which data assets are most reliable and complete

Ensure Quality and Operational Excellence

It’s not enough to create a data product. Revenue depends on ensuring the highest levels of reliability and quality. Sifflet ensures quality and operational excellence to protect your revenue streams.

  • Reduce the cost of maintaining your data products through automated monitoring
  • Prevent and detect data quality issues before customers are impacted
  • Empower rapid response to issues that could affect data product value
  • Streamline data delivery and sharing processes

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

What are the main differences between ETL and ELT for data integration?
ETL (Extract, Transform, Load) transforms data before storing it, while ELT (Extract, Load, Transform) loads raw data first, then transforms it. With modern cloud storage, ELT is often preferred for its flexibility and scalability. Whichever method you choose, pairing it with strong data pipeline monitoring ensures smooth operations.
Why is investing in data observability important for business leaders?
Great question! Investing in data observability helps organizations proactively monitor the health of their data, reduce the risk of bad data incidents, and ensure data quality across pipelines. It also supports better decision-making, improves SLA compliance, and helps maintain trust in analytics. Ultimately, it’s a strategic move that protects your business from costly mistakes and missed opportunities.
How does MCP improve root cause analysis in modern data systems?
MCP empowers LLMs to use structured inputs like logs and pipeline metadata, making it easier to trace issues across multiple steps. This structured interaction helps streamline root cause analysis, especially in complex environments where traditional observability tools might fall short. At Sifflet, we’re integrating MCP to enhance how our platform surfaces and explains data incidents.
How does Sifflet help with data observability during the CI process?
Sifflet integrates directly with your CI pipelines on platforms like GitHub and GitLab to proactively surface issues before code is merged. By analyzing the impact of dbt model changes and running data quality monitors in testing environments, Sifflet ensures data reliability and minimizes production disruptions.
What is metrics observability and why does it matter for business users?
Metrics observability helps business users trust and understand the KPIs they rely on by making it easy to trace how metrics are defined, calculated, and connected to other data assets. With Sifflet’s observability platform, teams can ensure their business metrics are accurate, reliable, and aligned across departments.
Will dbt Impact Analysis be available for other version control tools?
Yes! While it currently supports GitHub and GitLab, Sifflet is actively working on bringing dbt Impact Analysis to Bitbucket. This expansion ensures broader coverage and supports more teams in achieving better data governance and observability.
Can I customize how alerts are routed to ServiceNow from Sifflet?
Absolutely! You can customize routing based on alert metadata like domain, severity, or affected system. This ensures the right team gets notified without any manual triage, making your data pipeline monitoring more actionable and reliable.
How can tools like Sifflet help with data quality monitoring?
Sifflet is designed to make data quality monitoring scalable and business-aware. It offers automated anomaly detection, real-time alerts, and impact analysis so you can focus on the issues that matter most. With features like data profiling, dynamic thresholding, and low-code setup, Sifflet empowers both technical and non-technical users to maintain high data reliability across complex pipelines. It's a great fit for modern data teams looking to reduce manual effort and improve trust in their data.