Big Data. %%Big Potential.%%
Sell data products that meet the most demanding standards of data reliability, quality and health.


Identify Opportunities
Monetizing data starts with identifying your highest potential data sets. Sifflet can highlight patterns in data usage and quality that suggest monetization potential and help you uncover data combinations that could create value.
- Deep dive into patterns around data usage to identify high-value data sets through usage analytics
- Determine which data assets are most reliable and complete

Ensure Quality and Operational Excellence
It’s not enough to create a data product. Revenue depends on ensuring the highest levels of reliability and quality. Sifflet ensures quality and operational excellence to protect your revenue streams.
- Reduce the cost of maintaining your data products through automated monitoring
- Prevent and detect data quality issues before customers are impacted
- Empower rapid response to issues that could affect data product value
- Streamline data delivery and sharing processes


Still have a question in mind ?
Contact Us
Frequently asked questions
What makes Carrefour’s approach to observability scalable and effective?
Carrefour’s approach combines no-code self-service tools with as-code automation, making it easy for both technical and non-technical users to adopt. This balance, along with incremental implementation and cultural emphasis on data quality, supports scalable observability across the organization.
What role does technology play in supporting data team well-being?
The right technology can make a big difference. Adopting observability tools that offer features like data lineage tracking, data freshness checks, and pipeline health dashboards can reduce manual firefighting and help your team work more autonomously. This not only improves productivity but also makes day-to-day work more enjoyable.
How do the four pillars of data observability help improve data quality?
The four pillars—metrics, metadata, data lineage, and logs—work together to give teams full visibility into their data systems. Metrics help with data profiling and freshness checks, metadata enhances data governance, lineage enables root cause analysis, and logs provide insights into data interactions. Together, they support proactive data quality monitoring.
Why is data lineage important for GDPR compliance?
Data lineage is essential for GDPR because it helps you trace personal data from source to destination. This means you can see where PII is stored, how it flows through your data pipelines, and which reports or applications use it. With this visibility, you can manage deletion requests, audit data usage, and ensure data governance policies are enforced consistently.
Why is data observability important for business outcomes?
Data observability helps align technical metrics with strategic business goals. By monitoring real-time metrics and enabling root cause analysis, teams can quickly detect and resolve data issues, reducing downtime and improving decision-making. It’s not just about the data, it’s about the impact that data has on your business.
How does data lineage tracking help with root cause analysis in data integration?
Data lineage tracking gives visibility into how data flows from source to destination, making it easier to pinpoint where issues originate. This is essential for root cause analysis, especially when dealing with complex integrations across multiple systems. At Sifflet, we see data lineage as a cornerstone of any observability platform.
Why is data observability important when using ETL or ELT tools?
Data observability is crucial no matter which integration method you use. With ETL or ELT, you're moving and transforming data across multiple systems, which can introduce errors or delays. An observability platform like Sifflet helps you track data freshness, detect anomalies, and ensure SLA compliance across your pipelines. This means fewer surprises, faster root cause analysis, and more reliable data for your business teams.
How does Sifflet support AI-ready data for enterprises?
Sifflet is designed to ensure data quality and reliability, which are critical for AI initiatives. Our observability platform includes features like data freshness checks, anomaly detection, and root cause analysis, making it easier for teams to maintain high standards and trust in their analytics and AI models.



















-p-500.png)
