Monetization of Data

Big Data. Big Potential.

Sell data products that meet the most demanding standards of data reliability, quality and health.

Identify Opportunities

Monetizing data starts with identifying your highest potential data sets. Sifflet can highlight patterns in data usage and quality that suggest monetization potential and help you uncover data combinations that could create value.

  • Deep dive into patterns around data usage to identify high-value data sets through usage analytics
  • Determine which data assets are most reliable and complete

Ensure Quality and Operational Excellence

It’s not enough to create a data product. Revenue depends on ensuring the highest levels of reliability and quality. Sifflet ensures quality and operational excellence to protect your revenue streams.

  • Reduce the cost of maintaining your data products through automated monitoring
  • Prevent and detect data quality issues before customers are impacted
  • Empower rapid response to issues that could affect data product value
  • Streamline data delivery and sharing processes

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Frequently asked questions

Why is data observability so important for AI-powered organizations in 2025?
Great question! As AI continues to evolve, the quality and reliability of the data feeding those models becomes even more critical. Data observability ensures that your AI systems are powered by clean, accurate, and up-to-date data. With platforms like Sifflet, organizations can detect issues like data drift, monitor real-time metrics, and maintain data governance, all of which help AI models stay accurate and trustworthy.
What role did data observability play in Carrefour’s customer engagement strategy?
Data observability was crucial in maintaining high data quality for loyalty programs and marketing campaigns. With real-time metrics and anomaly detection in place, Carrefour was able to improve customer satisfaction and retention through more accurate and timely insights.
What sessions is Sifflet hosting at Big Data LDN?
We’ve got an exciting lineup! Join us for talks on building trust through data observability, monitoring and tracing data assets at scale, and transforming data skepticism into collaboration. Don’t miss our session on how to unlock the power of data observability for your organization.
Why is data quality monitoring so important for data-driven decision-making, especially in uncertain times?
Great question! Data quality monitoring helps ensure that the data you're relying on is accurate, timely and complete. In high-stress or uncertain situations, poor data can lead to poor decisions. By implementing scalable data quality monitoring, including anomaly detection and data freshness checks, you can avoid the 'garbage in, garbage out' problem and make confident, informed decisions.
What benefits does end-to-end data lineage offer my team?
End-to-end data lineage helps your team perform accurate impact assessments and faster root cause analysis. By connecting declared and built-in assets, you get full visibility into upstream and downstream dependencies, which is key for data reliability and operational intelligence.
How does Sifflet use AI to enhance data observability?
Sifflet uses AI not just for buzzwords, but to genuinely improve your workflows. From AI-powered metadata generation to dynamic thresholding and intelligent anomaly detection, Sifflet helps teams automate data quality monitoring and make faster, smarter decisions based on real-time insights.
Can Sifflet’s dbt Impact Analysis help with root cause analysis?
Absolutely! By identifying all downstream assets affected by a dbt model change, Sifflet’s Impact Report makes it easier to trace issues back to their source, significantly speeding up root cause analysis and reducing incident resolution time.
What made data observability such a hot topic in 2021?
Great question! Data observability really took off in 2021 because it became clear that reliable data is critical for driving business decisions. As data pipelines became more complex, teams needed better ways to monitor data quality, freshness, and lineage. That’s where data observability platforms came in, helping companies ensure trust in their data by making it fully observable end-to-end.
Still have questions?