Big Data. %%Big Potential.%%

Sell data products that meet the most demanding standards of data reliability, quality and health.

Identify Opportunities

Monetizing data starts with identifying your highest potential data sets. Sifflet can highlight patterns in data usage and quality that suggest monetization potential and help you uncover data combinations that could create value.

  • Deep dive into patterns around data usage to identify high-value data sets through usage analytics
  • Determine which data assets are most reliable and complete

Ensure Quality and Operational Excellence

It’s not enough to create a data product. Revenue depends on ensuring the highest levels of reliability and quality. Sifflet ensures quality and operational excellence to protect your revenue streams.

  • Reduce the cost of maintaining your data products through automated monitoring
  • Prevent and detect data quality issues before customers are impacted
  • Empower rapid response to issues that could affect data product value
  • Streamline data delivery and sharing processes

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

What makes Carrefour’s approach to observability scalable and effective?
Carrefour’s approach combines no-code self-service tools with as-code automation, making it easy for both technical and non-technical users to adopt. This balance, along with incremental implementation and cultural emphasis on data quality, supports scalable observability across the organization.
What role does technology play in supporting data team well-being?
The right technology can make a big difference. Adopting observability tools that offer features like data lineage tracking, data freshness checks, and pipeline health dashboards can reduce manual firefighting and help your team work more autonomously. This not only improves productivity but also makes day-to-day work more enjoyable.
How do the four pillars of data observability help improve data quality?
The four pillars—metrics, metadata, data lineage, and logs—work together to give teams full visibility into their data systems. Metrics help with data profiling and freshness checks, metadata enhances data governance, lineage enables root cause analysis, and logs provide insights into data interactions. Together, they support proactive data quality monitoring.
Why is data lineage important for GDPR compliance?
Data lineage is essential for GDPR because it helps you trace personal data from source to destination. This means you can see where PII is stored, how it flows through your data pipelines, and which reports or applications use it. With this visibility, you can manage deletion requests, audit data usage, and ensure data governance policies are enforced consistently.
Why is data observability important for business outcomes?
Data observability helps align technical metrics with strategic business goals. By monitoring real-time metrics and enabling root cause analysis, teams can quickly detect and resolve data issues, reducing downtime and improving decision-making. It’s not just about the data, it’s about the impact that data has on your business.
How does data lineage tracking help with root cause analysis in data integration?
Data lineage tracking gives visibility into how data flows from source to destination, making it easier to pinpoint where issues originate. This is essential for root cause analysis, especially when dealing with complex integrations across multiple systems. At Sifflet, we see data lineage as a cornerstone of any observability platform.
Why is data observability important when using ETL or ELT tools?
Data observability is crucial no matter which integration method you use. With ETL or ELT, you're moving and transforming data across multiple systems, which can introduce errors or delays. An observability platform like Sifflet helps you track data freshness, detect anomalies, and ensure SLA compliance across your pipelines. This means fewer surprises, faster root cause analysis, and more reliable data for your business teams.
How does Sifflet support AI-ready data for enterprises?
Sifflet is designed to ensure data quality and reliability, which are critical for AI initiatives. Our observability platform includes features like data freshness checks, anomaly detection, and root cause analysis, making it easier for teams to maintain high standards and trust in their analytics and AI models.