Big Data. %%Big Potential.%%

Sell data products that meet the most demanding standards of data reliability, quality and health.

Identify Opportunities

Monetizing data starts with identifying your highest potential data sets. Sifflet can highlight patterns in data usage and quality that suggest monetization potential and help you uncover data combinations that could create value.

  • Deep dive into patterns around data usage to identify high-value data sets through usage analytics
  • Determine which data assets are most reliable and complete

Ensure Quality and Operational Excellence

It’s not enough to create a data product. Revenue depends on ensuring the highest levels of reliability and quality. Sifflet ensures quality and operational excellence to protect your revenue streams.

  • Reduce the cost of maintaining your data products through automated monitoring
  • Prevent and detect data quality issues before customers are impacted
  • Empower rapid response to issues that could affect data product value
  • Streamline data delivery and sharing processes

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

How does Full Data Stack Observability help improve data quality at scale?
Full Data Stack Observability gives you end-to-end visibility into your data pipeline, from ingestion to consumption. It enables real-time anomaly detection, root cause analysis, and proactive alerts, helping you catch and resolve issues before they affect your dashboards or reports. It's a game-changer for organizations looking to scale data quality efforts efficiently.
Why is standardization important when scaling dbt, and how does Sifflet support it?
Standardization is key to maintaining control as your dbt project grows. Sifflet supports this by centralizing metadata and enabling compliance monitoring through features like data contracts enforcement and asset tagging. This ensures consistency, improves data governance, and reduces the risk of data drift or unmonitored critical assets.
What role does data lineage tracking play in AI compliance and governance?
Data lineage tracking is essential for understanding where your AI training data comes from and how it has been transformed. With Sifflet’s field-level lineage and Universal Integration API, you get full transparency across your data pipelines. This is crucial for meeting regulatory requirements like GDPR and the AI Act, and it strengthens your overall data governance strategy.
How does Flow Stopper improve data reliability for engineering teams?
By integrating real-time data quality monitoring directly into your orchestration layer, Flow Stopper gives Data Engineers the ability to stop the flow when something looks off. This means fewer broken pipelines, better SLA compliance, and more time spent on innovation instead of firefighting.
What should I consider when choosing a modern observability tool for my data stack?
When evaluating observability tools, consider factors like ease of setup, support for real-time metrics, data freshness checks, and integration with your existing stack. Look for platforms that offer strong data pipeline monitoring, business context in alerts, and cost transparency. Tools like Sifflet also provide fast time-to-value and support for both batch and streaming data observability.
How is data freshness different from latency or timeliness?
Great question! While these terms are often used interchangeably, they each mean something different. Data freshness is about how up-to-date your data is. Latency measures the delay from data generation to availability, and timeliness refers to whether that data arrives within expected time windows. Understanding these differences is key to effective data pipeline monitoring and SLA compliance.
Can data lineage help with regulatory compliance such as GDPR?
Absolutely. Data lineage supports data governance by mapping data flows and access rights, which is essential for compliance with regulations like GDPR. Features like automated PII propagation help teams monitor sensitive data and enforce security observability best practices.
Is this integration helpful for teams focused on data reliability and governance?
Yes, definitely! The Sifflet and Firebolt integration supports strong data governance and boosts data reliability by enabling data profiling, schema monitoring, and automated validation rules. This ensures your data remains trustworthy and compliant.