Big Data. %%Big Potential.%%
Sell data products that meet the most demanding standards of data reliability, quality and health.


Identify Opportunities
Monetizing data starts with identifying your highest potential data sets. Sifflet can highlight patterns in data usage and quality that suggest monetization potential and help you uncover data combinations that could create value.
- Deep dive into patterns around data usage to identify high-value data sets through usage analytics
- Determine which data assets are most reliable and complete

Ensure Quality and Operational Excellence
It’s not enough to create a data product. Revenue depends on ensuring the highest levels of reliability and quality. Sifflet ensures quality and operational excellence to protect your revenue streams.
- Reduce the cost of maintaining your data products through automated monitoring
- Prevent and detect data quality issues before customers are impacted
- Empower rapid response to issues that could affect data product value
- Streamline data delivery and sharing processes


Still have a question in mind ?
Contact Us
Frequently asked questions
What does Sifflet's recent $12.8M Series A funding mean for the future of data observability?
Great question! This funding round, led by EQT Ventures, allows us to double down on our mission to make data more reliable and trustworthy. With this investment, we're expanding our data observability platform, enhancing real-time monitoring capabilities, and growing our presence in EMEA and the US.
How does Sifflet support reverse ETL and operational analytics?
Sifflet enhances reverse ETL workflows by providing data observability dashboards and real-time monitoring. Our platform ensures your data stays fresh, accurate, and actionable by enabling root cause analysis, data lineage tracking, and proactive anomaly detection across your entire pipeline.
How does data observability help detect data volume issues?
Data observability provides visibility into your pipelines by tracking key metrics like row counts, duplicates, and ingestion patterns. It acts as an early warning system, helping teams catch volume anomalies before they affect dashboards or ML models. By using a robust observability platform, you can ensure that your data is consistently complete and trustworthy.
What is data observability and why is it important for modern data teams?
Data observability is the ability to monitor and understand the health of your data across the entire data stack. As data pipelines become more complex, having real-time visibility into where and why data issues occur helps teams maintain data reliability and trust. At Sifflet, we believe data observability is essential for proactive data quality monitoring and faster root cause analysis.
How is data volume different from data variety?
Great question! Data volume is about how much data you're receiving, while data variety refers to the different types and formats of data sources. For example, a sudden drop in appointment data is a volume issue, while a new file format causing schema mismatches is a variety issue. Observability tools help you monitor both dimensions to maintain healthy pipelines.
Can Sifflet’s dbt Impact Analysis help with root cause analysis?
Absolutely! By identifying all downstream assets affected by a dbt model change, Sifflet’s Impact Report makes it easier to trace issues back to their source, significantly speeding up root cause analysis and reducing incident resolution time.
What makes Sifflet’s approach to anomaly detection more reliable than traditional methods?
Sifflet uses intelligent, ML-driven anomaly detection that evolves with your data. Instead of relying on static rules, it adjusts sensitivity and parameters in real time, improving data reliability and helping teams focus on real issues without being overwhelmed by alert fatigue.
What role does data lineage tracking play in volume monitoring?
Data lineage tracking is essential for root cause analysis when volume anomalies occur. It helps you trace where data came from and how it's been transformed, so if a volume drop happens, you can quickly identify whether it was caused by a failed API, upstream filter, or schema change. This context is key for effective data pipeline monitoring.



















-p-500.png)
