Data Governance Leader

You’re not just checking compliance boxes. You’re enabling safe, scalable data use across the organization. Sifflet gives governance leaders full visibility, control, and automation, so policies stick, risks shrink, and data stays trusted no matter how fast things move.

Stronger Compliance, Less Manual Work

Automated cataloging, lineage, and audit trails make it easier to meet regulatory requirements without drowning in spreadsheets or manual updates. Sifflet keeps your governance up to date and always inspection-ready.

Fewer Blind Spots Across the Data Stack

With Sifflet, governance teams get full visibility across ingestion, transformation, and consumption, including shadow data and undocumented assets. You can finally govern what’s actually in use, not just what’s documented.

Governance That Scales With the Business

Sifflet integrates directly into your data workflows, so policies and controls scale alongside your teams and infrastructure. Whether you're onboarding new domains or expanding your stack, governance stays aligned and under control.

A Catalog That’s Actually Alive

Most catalogs go out of date the moment they’re published. Sifflet’s catalog is powered by automated metadata ingestion across your full stack: Snowflake, Databricks, dbt, Tableau, and more. You get real-time visibility into schema changes, freshness, usage, and ownership. No more chasing people for updates. No more flying blind.

Lineage That Goes Beyond Tables

Sifflet provides deep, column-level lineage with full context, not just technical dependencies, but business impact. You can trace an issue from a broken pipeline to a downstream dashboard, and instantly see which KPIs, reports, or teams are affected. This makes policy enforcement, impact analysis, and root-cause resolution fast and reliable.

Governance Built Into the Workflow

Sifflet turns governance from a reactive process into a built-in feature of everyday data ops. You can tag sensitive assets, certify trusted datasets, monitor for violations, and set up alerts, all from inside the platform. No need to bolt governance onto the side. It’s already baked in, and it scales with your data.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What’s the difference between data distribution and data lineage tracking?
Great distinction! Data distribution shows you how values are spread across a dataset, while data lineage tracking helps you trace where that data came from and how it’s moved through your pipeline. Both are essential for root cause analysis, but they solve different parts of the puzzle in a robust observability platform.
How does Sifflet support AI-ready data for enterprises?
Sifflet is designed to ensure data quality and reliability, which are critical for AI initiatives. Our observability platform includes features like data freshness checks, anomaly detection, and root cause analysis, making it easier for teams to maintain high standards and trust in their analytics and AI models.
Can Sifflet extend the capabilities of dbt tests for better observability?
Absolutely! While dbt tests are a great starting point, Sifflet takes things further with advanced observability tools. By ingesting dbt tests into Sifflet, you can apply powerful features like dynamic thresholding, real-time alerts, and incident response automation. It’s a big step up in data reliability and SLA compliance.
What makes Sifflet's approach to data quality unique?
At Sifflet, we believe data quality isn't one-size-fits-all. Our observability platform blends technical robustness with business context, offering customized data quality monitoring that adapts to your specific use cases. This means you get both reliable pipelines and meaningful metrics that align with your business goals.
Can I use Sifflet to detect issues in my dbt models before they impact downstream dashboards?
Absolutely! Sifflet's real-time anomaly detection and full data lineage tracking make it easy to catch issues in your dbt models early. This proactive approach helps prevent broken dashboards and ensures data reliability across your analytics pipeline.
What new dbt metadata can I now see in Sifflet?
You’ll now find key dbt metadata like the last execution timestamp and status directly within the dataset catalog and asset pages. This makes real-time metrics and pipeline health monitoring more accessible and actionable across your observability platform.
How does a data observability platform help improve inventory accuracy?
A data observability platform continuously monitors inventory data using real-time metrics and anomaly detection. It compares RFID scans with POS transactions, flags inconsistencies, and tracks key inventory KPIs. This helps retailers maintain more accurate stock levels and reduce shrinkage or overstocking.
What does 'observability culture' mean at Adaptavist?
For Adaptavist, observability culture means going beyond tools. It's about clear ownership of alerts, integrating data quality monitoring into sprints, and giving stakeholders ways to provide feedback directly in dashboards. They even track observability metrics to continuously improve their own observability practices.