Data Governance Leader

You’re not just checking compliance boxes. You’re enabling safe, scalable data use across the organization. Sifflet gives governance leaders full visibility, control, and automation, so policies stick, risks shrink, and data stays trusted no matter how fast things move.

Stronger Compliance, Less Manual Work

Automated cataloging, lineage, and audit trails make it easier to meet regulatory requirements without drowning in spreadsheets or manual updates. Sifflet keeps your governance up to date and always inspection-ready.

Fewer Blind Spots Across the Data Stack

With Sifflet, governance teams get full visibility across ingestion, transformation, and consumption, including shadow data and undocumented assets. You can finally govern what’s actually in use, not just what’s documented.

Governance That Scales With the Business

Sifflet integrates directly into your data workflows, so policies and controls scale alongside your teams and infrastructure. Whether you're onboarding new domains or expanding your stack, governance stays aligned and under control.

A Catalog That’s Actually Alive

Most catalogs go out of date the moment they’re published. Sifflet’s catalog is powered by automated metadata ingestion across your full stack: Snowflake, Databricks, dbt, Tableau, and more. You get real-time visibility into schema changes, freshness, usage, and ownership. No more chasing people for updates. No more flying blind.

Lineage That Goes Beyond Tables

Sifflet provides deep, column-level lineage with full context, not just technical dependencies, but business impact. You can trace an issue from a broken pipeline to a downstream dashboard, and instantly see which KPIs, reports, or teams are affected. This makes policy enforcement, impact analysis, and root-cause resolution fast and reliable.

Governance Built Into the Workflow

Sifflet turns governance from a reactive process into a built-in feature of everyday data ops. You can tag sensitive assets, certify trusted datasets, monitor for violations, and set up alerts, all from inside the platform. No need to bolt governance onto the side. It’s already baked in, and it scales with your data.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What is reverse ETL and why is it important in the modern data stack?
Reverse ETL is the process of moving data from your data warehouse into external systems like CRMs or marketing platforms. It plays a crucial role in the modern data stack by enabling operational analytics, allowing business teams to act on real-time metrics and make data-driven decisions directly within their everyday tools.
How does Sifflet help with root cause analysis in Firebolt environments?
Sifflet makes root cause analysis easy by providing complete data lineage tracking for your Firebolt assets. You can trace issues back to their source, whether it's an upstream dbt model or a downstream Looker dashboard, all within a single platform.
How does field-level lineage improve root cause analysis in observability platforms like Sifflet?
Field-level lineage allows users to trace issues down to individual columns across tables, making it easier to pinpoint where a problem originated. This level of detail enhances root cause analysis and impact assessment, helping teams resolve incidents quickly and maintain trust in their data.
What kind of metadata can I see for a Fivetran connector in Sifflet?
When you click on a Fivetran connector node in the lineage, you’ll see key metadata like source and destination, sync frequency, current status, and the timestamp of the latest sync. This complements Sifflet’s existing metadata like owner and last refresh for complete context.
What role do Common Table Expressions (CTEs) play in query optimization?
CTEs help simplify complex queries by breaking them into manageable parts. This boosts readability and performance, making it easier to identify issues during root cause analysis and enhancing your data quality monitoring efforts.
How does Sifflet handle root cause analysis differently from Monte Carlo?
Sifflet’s AI agent, Sage, performs root cause analysis by combining metadata, query logs, code changes, and historical incidents to build a full narrative of the issue. This speeds up resolution and provides context-rich insights, making it easier to pinpoint and fix data pipeline issues efficiently.
Why is schema monitoring such a critical part of data observability?
Schema monitoring helps catch unexpected changes in your data structure before they break downstream systems like dashboards or ML models. It's a core capability in any modern observability platform because it ensures data reliability and prevents silent failures in your pipelines.
What makes Etam’s data strategy resilient in a fast-changing retail landscape?
Etam’s data strategy is built on clear business alignment, strong data quality monitoring, and a focus on delivering ROI across short, mid, and long-term horizons. With the help of an observability platform, they can adapt quickly, maintain data reliability, and support strategic decision-making even in uncertain conditions.