Snowflake
Sifflet icon

See the Whole Picture with Sifflet and Snowflake

Contextual Observability That Goes Beyond the Stack

Your Snowflake data powers decisions across your business, but when something breaks, it’s more than pipelines at risk. It’s dashboards, AI models, customer reporting, and trust. Sifflet brings business context into your observability layer so you can fix what matters, faster.

Why chose Sifflet for Snowflake?

Your Snowflake data powers decisions across teams, but when quality issues strike, it’s not just pipelines that break. It’s customer experiences, revenue reporting, AI model accuracy, and more.

That’s where Sifflet stands apart.

Sifflet brings business context into the heart of data observability, so you don’t just know what’s broken, you know what matters. Our platform weaves metadata, pipeline behavior, and usage patterns into a unified map of technical and business logic, helping your team spot, triage, and resolve issues before they become downstream disasters.

Deep Integration with Snowflake

Sifflet enhances the observability of your Snowflake stack by letting you:

Prioritize What Matters Most

Not every broken table is worth a PagerDuty alert. Sifflet identifies which anomalies impact key dashboards, SLAs, or ML models, so your team focuses where it counts.

Map Lineage with Business Logic

See how data flows across your stack, not just pipelines, but people. Sifflet combines metadata and usage patterns to show who’s using what, and why. From column to customer.

Cut Through the Noise

Sifflet delivers context-rich alerts that combine technical symptoms with business impact. Your team gets fewer false alarms, and faster resolution.

Leverage Time Travel for Smarter Detection

Historical snapshots enhance anomaly detection with temporal intelligence.

Snowflake-specific assets

Sifflet supports multiple Snowflake-specific objects, like streams and stages, for exhaustive coverage.

Usage and Snowflake metadata

Get detailed statistics about the usage of your Snowflake assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from Snowflake.

Field-level lineage

Have a detailed understanding of how data flows through your platform via field-level end-to-end lineage for Snowflake.

Built for Modern Data Teams on Snowflake

  • Trusted by Snowflake-Centric Enterprises Across Europe and the U.S.
  • Native integration with Snowflake’s metadata and query engine
  • Designed for scale, trust, and business alignment

“With Sifflet, we don’t just detect anomalies in Snowflake. We understand their real-world impact, and we act before anyone downstream even notices.”
Head of Data Governance, European Retail Leader

Perfect For…

  • Data Leaders deploying Snowflake as the central nervous system of their organization
  • Analytics Teams needing reliable, self-serve dashboards and clear ownership
  • Governance & Risk Teams looking to enforce data quality, lineage, and auditability
  • AI & ML Teams training models on clean, explainable data they can trust

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

Can Sage really help with root cause analysis and incident response?
Absolutely! Sage is designed to retain institutional knowledge, track code changes, and map data lineage in real time. This makes root cause analysis faster and more accurate, which is a huge win for incident response and overall data pipeline monitoring.
Can I see how a business metric is calculated in Sifflet?
Absolutely! With Sifflet’s data lineage tracking, users can view the full column-level lineage from ingestion to consumption. This transparency helps users understand how each metric is computed and how it relates to other data or metrics in the pipeline.
What role does MCP play in improving incident response automation?
MCP is a game-changer for incident response automation. By allowing LLMs to interact with telemetry data, call remediation tools, and maintain context over time, MCP enables proactive monitoring and faster resolution. This aligns perfectly with Sifflet’s mission to reduce downtime and improve pipeline resilience.
What role does data quality monitoring play in a data catalog?
Data quality monitoring ensures your data is accurate, complete, and consistent. A good data catalog should include profiling and validation tools that help teams assess data quality, which is crucial for maintaining SLA compliance and enabling proactive monitoring.
How does automated data lineage improve data reliability?
Automated data lineage boosts data reliability by giving teams a clear, real-time view of data flows and dependencies. This visibility supports faster troubleshooting, better data governance, and improved SLA compliance, especially when combined with other observability tools in your stack.
How does Sifflet support traceability across diverse data stacks?
Traceability is a key pillar of Sifflet’s observability platform. We’ve expanded support for tools like Synapse, MicroStrategy, and Fivetran, and introduced our Universal Connector to bring in any asset, even from AI models. This makes root cause analysis and data lineage tracking more comprehensive and actionable.
What is data observability and why is it important?
Data observability is the ability to monitor, understand, and troubleshoot data systems using real-time metrics and contextual insights. It's important because it helps teams detect and resolve issues quickly, ensuring data reliability and reducing the risk of bad data impacting business decisions.
How does the rise of unstructured data impact data quality monitoring?
Unstructured data, like text, images, and audio, is growing rapidly due to AI adoption and IoT expansion. This makes data quality monitoring more complex but also more essential. Tools that can profile and validate unstructured data are key to maintaining high-quality datasets for both traditional and AI-driven applications.

Want to try Sifflet on your Snowflake Stack?

Get in touch Now

I want to Try