Integrates with your %%modern data stack%%

Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.

Search an integration
Browse by category
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Want %%Sifflet%% to integrate your stack?

We'd be such a good fit together

Talk to an expert

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What are the main differences between ETL and ELT for data integration?
ETL (Extract, Transform, Load) transforms data before storing it, while ELT (Extract, Load, Transform) loads raw data first, then transforms it. With modern cloud storage, ELT is often preferred for its flexibility and scalability. Whichever method you choose, pairing it with strong data pipeline monitoring ensures smooth operations.
How does SQL Table Tracer handle different SQL dialects?
SQL Table Tracer uses Antlr4 with semantic predicates to support multiple SQL dialects like Snowflake, Redshift, and PostgreSQL. This flexible parsing approach ensures accurate lineage extraction across diverse environments, which is essential for data pipeline monitoring and distributed systems observability.
Why is data distribution such an important part of data observability?
Great question! Data distribution gives you insight into the shape and spread of your data values, which traditional monitoring tools often miss. While volume, schema, and freshness checks tell you if the data is present and structured correctly, distribution monitoring helps you catch hidden issues like skewed categories or outlier spikes. It's a key component of any modern observability platform focused on data reliability.
How does Sifflet support data quality monitoring?
Sifflet makes data quality monitoring seamless with its auto-coverage feature. It automatically suggests fields to monitor and applies rules for freshness, uniqueness, and null values. This proactive monitoring helps maintain SLA compliance and keeps your data assets trustworthy and safe to use.
How does Sifflet use AI to improve data observability?
At Sifflet, we're integrating advanced AI models into our observability platform to enhance data quality monitoring and anomaly detection. Marie, our Machine Learning Engineer, has been instrumental in building intelligent systems that automatically detect issues across data pipelines, making it easier to maintain data reliability in real time.
What makes Sifflet’s Data Catalog different from built-in catalogs like Snowsight or Unity Catalog?
Unlike tool-specific catalogs, Sifflet serves as a 'Catalog of Catalogs.' It brings together metadata from across your entire data ecosystem, providing a single source of truth for data lineage tracking, asset discovery, and SLA compliance.
Why is a user-friendly interface important in an observability tool?
A user-friendly interface boosts adoption across teams and makes it easier to navigate complex datasets. For observability tools, especially those focused on data cataloging and data discovery, a clean UI enables faster insights and more efficient collaboration.
How does data observability support AI and machine learning initiatives?
AI models are only as good as the data they’re trained on. With data observability, you can ensure data quality, detect data drift, and enforce validation rules, all of which are critical for reliable AI outcomes. Sifflet helps you maintain trust in your data so you can confidently scale your ML and predictive analytics efforts.