Incident Response Optimization

A Seriously Smart Upgrade.

Prevent, detect and resolve incidents faster than ever before. No matter what your data stack throws at you, your data quality will reach new levels of performance.

No More Over Reacting

Sifflet takes you from reactive to proactive, with real-time detection and alerts that help you to catch data disruptions, before they happen. Watch your mean time to detection fall rapidly. On even the most complex data stacks.

  • Advanced capabilities such as multidimensional monitoring help you seize complex data quality issues, even before breaks
  • ML-based monitors shield your most business-critical data, so essential KPIs are protected and you get notified before there is business impact 
  • OOTB and customizable monitors give you comprehensive, end-to-end coverage and AI helps them get smarter as they go, reducing your reactivity even more.

Resolutions in Record Time

Get to the root cause of incidents and resolve them in record time. 

  • Quickly understand the scope and impact of an incident thanks to detailed system visibility
  • Trace data flow through your system, identify the start point of issues, and pinpoint downstream dependencies to enable a seamless experience for business users, all thanks to data lineage
  • Halt the propagation of data quality anomalies with Sifflet’s Flow Stopper

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Frequently asked questions

Why is data observability so important for AI-powered organizations in 2025?
Great question! As AI continues to evolve, the quality and reliability of the data feeding those models becomes even more critical. Data observability ensures that your AI systems are powered by clean, accurate, and up-to-date data. With platforms like Sifflet, organizations can detect issues like data drift, monitor real-time metrics, and maintain data governance, all of which help AI models stay accurate and trustworthy.
What practical steps can companies take to build a data-driven culture?
To build a data-driven culture, start by investing in data literacy, aligning goals across teams, and adopting observability tools that support proactive monitoring. Platforms with features like metrics collection, telemetry instrumentation, and real-time alerts can help ensure data reliability and build trust in your analytics.
How is AI shaping the future of data observability?

AI enhances data observability with advanced anomaly detection, predictive analytics, and automated root cause analysis. This helps teams identify and resolve issues faster while reducing manual effort. Have a look at how Sifflet is leveraging AI for better data observability here

What can I expect to learn from Sifflet’s session on cataloging and monitoring data assets?
Our Head of Product, Martin Zerbib, will walk you through how Sifflet enables data lineage tracking, real-time metrics, and data profiling at scale. You’ll get a sneak peek at our roadmap and see how we’re making data more accessible and reliable for teams of all sizes.
Can I see how a business metric is calculated in Sifflet?
Absolutely! With Sifflet’s data lineage tracking, users can view the full column-level lineage from ingestion to consumption. This transparency helps users understand how each metric is computed and how it relates to other data or metrics in the pipeline.
What kind of data quality monitoring does Sifflet offer when used with dbt?
When paired with dbt, Sifflet provides robust data quality monitoring by combining dbt test insights with ML-based rules and UI-defined validations. This helps you close test coverage gaps and maintain high data quality throughout your data pipelines.
What features should we look for in a data observability tool?
A great data observability tool should offer automated data quality checks like data freshness checks and schema change detection, field-level data lineage tracking for root cause analysis, and a powerful metadata search engine. These capabilities streamline incident response and help maintain data governance across your entire stack.
Can Sifflet help me trace how data moves through my pipelines?
Absolutely! Sifflet’s data lineage tracking gives you a clear view of how data flows and transforms across your systems. This level of transparency is crucial for root cause analysis and ensuring data governance standards are met.
Still have questions?