A Seriously Smart Upgrade.
Prevent, detect and resolve incidents faster than ever before. No matter what your data stack throws at you, your data quality will reach new levels of performance.


No More Over Reacting
Sifflet takes you from reactive to proactive, with real-time detection and alerts that help you to catch data disruptions, before they happen. Watch your mean time to detection fall rapidly. On even the most complex data stacks.
- Advanced capabilities such as multidimensional monitoring help you seize complex data quality issues, even before breaks
- ML-based monitors shield your most business-critical data, so essential KPIs are protected and you get notified before there is business impact
- OOTB and customizable monitors give you comprehensive, end-to-end coverage and AI helps them get smarter as they go, reducing your reactivity even more.

Resolutions in Record Time
Get to the root cause of incidents and resolve them in record time.
- Quickly understand the scope and impact of an incident thanks to detailed system visibility
- Trace data flow through your system, identify the start point of issues, and pinpoint downstream dependencies to enable a seamless experience for business users, all thanks to data lineage
- Halt the propagation of data quality anomalies with Sifflet’s Flow Stopper


Still have a question in mind ?
Contact Us
Frequently asked questions
When should companies start implementing data quality monitoring tools?
Ideally, data quality monitoring should begin as early as possible in your data journey. As Dan Power shared during Entropy, fixing issues at the source is far more efficient than tracking down errors later. Early adoption of observability tools helps you proactively catch problems, reduce manual fixes, and improve overall data reliability from day one.
Why does AI often fail even when the models are technically sound?
Great question! AI doesn't usually fail because of bad models, but because of unreliable data. Without strong data observability in place, it's hard to detect data issues like schema changes, stale tables, or broken pipelines. These problems undermine trust, and without trust in your data, even the best models can't deliver value.
How does Sifflet help with real-time anomaly detection?
Sifflet uses ML-based monitors and an AI-driven assistant to detect anomalies in real time. Whether it's data drift detection, schema changes, or unexpected drops in metrics, our platform ensures you catch issues early and resolve them fast with built-in root cause analysis and incident reporting.
Can schema issues affect SLA compliance in real-time analytics?
Absolutely. When schema changes go undetected, they can cause delays, errors, or data loss that violate your SLA commitments. Real-time metrics and schema monitoring are essential for maintaining SLA compliance and keeping your analytics pipeline observability strong.
What is reverse ETL and why is it important in the modern data stack?
Reverse ETL is the process of moving data from your data warehouse into external systems like CRMs or marketing platforms. It plays a crucial role in the modern data stack by enabling operational analytics, allowing business teams to act on real-time metrics and make data-driven decisions directly within their everyday tools.
What makes Sifflet different from other data observability tools?
Sifflet stands out as a metadata control plane that connects technical reliability with business context. Unlike point solutions, it offers AI-native automation, full data lineage tracking, and cross-functional accessibility, making it ideal for organizations that need to scale trust in their data across teams.
Can I define data quality monitors as code using Sifflet?
Absolutely! With Sifflet's Data-Quality-as-Code (DQaC) v2 framework, you can define and manage thousands of monitors in YAML right from your IDE. This Everything-as-Code approach boosts automation and makes data quality monitoring scalable and developer-friendly.
What makes Sifflet stand out from other data observability platforms?
Great question! Sifflet stands out through its fast setup, intuitive interface, and powerful features like Field Level Lineage and auto-coverage. It’s designed to give you full data stack observability quickly, so you can focus on insights instead of infrastructure. Plus, its visual data volume tracking and anomaly detection help ensure data reliability across your pipelines.