A Seriously Smart Upgrade.
Prevent, detect and resolve incidents faster than ever before. No matter what your data stack throws at you, your data quality will reach new levels of performance.


No More Over Reacting
Sifflet takes you from reactive to proactive, with real-time detection and alerts that help you to catch data disruptions, before they happen. Watch your mean time to detection fall rapidly. On even the most complex data stacks.
- Advanced capabilities such as multidimensional monitoring help you seize complex data quality issues, even before breaks
- ML-based monitors shield your most business-critical data, so essential KPIs are protected and you get notified before there is business impact
- OOTB and customizable monitors give you comprehensive, end-to-end coverage and AI helps them get smarter as they go, reducing your reactivity even more.

Resolutions in Record Time
Get to the root cause of incidents and resolve them in record time.
- Quickly understand the scope and impact of an incident thanks to detailed system visibility
- Trace data flow through your system, identify the start point of issues, and pinpoint downstream dependencies to enable a seamless experience for business users, all thanks to data lineage
- Halt the propagation of data quality anomalies with Sifflet’s Flow Stopper


Still have a question in mind ?
Contact Us
Frequently asked questions
What makes Sifflet’s approach to data observability unique?
Our approach stands out because we treat data observability as both an engineering and organizational concern. By combining telemetry instrumentation, root cause analysis, and business KPI tracking, we help teams align technical reliability with business outcomes.
Why is data observability important during the data integration process?
Data observability is key during data integration because it helps detect issues like schema changes or broken APIs early on. Without it, bad data can flow downstream, impacting analytics and decision-making. At Sifflet, we believe observability should start at the source to ensure data reliability across the whole pipeline.
What made data observability such a hot topic in 2021?
Great question! Data observability really took off in 2021 because it became clear that reliable data is critical for driving business decisions. As data pipelines became more complex, teams needed better ways to monitor data quality, freshness, and lineage. That’s where data observability platforms came in, helping companies ensure trust in their data by making it fully observable end-to-end.
Why is data distribution such an important part of data observability?
Great question! Data distribution gives you insight into the shape and spread of your data values, which traditional monitoring tools often miss. While volume, schema, and freshness checks tell you if the data is present and structured correctly, distribution monitoring helps you catch hidden issues like skewed categories or outlier spikes. It's a key component of any modern observability platform focused on data reliability.
What makes business-aware data observability so important?
Business-aware observability bridges the gap between technical issues and real-world outcomes. It’s not just about detecting schema changes or data drift — it’s about understanding how those issues affect KPIs, dashboards, and decisions. At Sifflet, we bring together telemetry instrumentation, data profiling, and business context so teams can prioritize incidents based on impact, not just severity. This empowers everyone, from data engineers to product managers, to trust and act on data with confidence.
How does Sifflet help identify performance bottlenecks in dbt models?
Sifflet's dbt runs tab offers deep insights into model execution, cost, and runtime, making it easy to spot inefficiencies. You can also use historical performance data to set up custom dashboards and proactive monitors. This helps with capacity planning and ensures your data pipelines stay optimized and cost-effective.
What makes Sifflet different from other data observability platforms like Monte Carlo or Anomalo?
Sifflet stands out by offering a unified observability platform that combines data cataloging, monitoring, and data lineage tracking in one place. Unlike tools that focus only on anomaly detection or technical metrics, Sifflet brings in business context, empowering both technical and non-technical users to collaborate and ensure data reliability at scale.
Is data governance more about culture or tools?
It's a mix of both, but culture plays a big role. As Dan Power puts it, 'culture eats strategy for breakfast.' Even the best observability tools won't succeed without enterprise-wide data literacy and buy-in. That’s why training, user-friendly platforms, and fostering collaboration are just as important as the technology stack you choose.



















-p-500.png)
