A Seriously Smart Upgrade.
Prevent, detect and resolve incidents faster than ever before. No matter what your data stack throws at you, your data quality will reach new levels of performance.


No More Over Reacting
Sifflet takes you from reactive to proactive, with real-time detection and alerts that help you to catch data disruptions, before they happen. Watch your mean time to detection fall rapidly. On even the most complex data stacks.
- Advanced capabilities such as multidimensional monitoring help you seize complex data quality issues, even before breaks
- ML-based monitors shield your most business-critical data, so essential KPIs are protected and you get notified before there is business impact
- OOTB and customizable monitors give you comprehensive, end-to-end coverage and AI helps them get smarter as they go, reducing your reactivity even more.

Resolutions in Record Time
Get to the root cause of incidents and resolve them in record time.
- Quickly understand the scope and impact of an incident thanks to detailed system visibility
- Trace data flow through your system, identify the start point of issues, and pinpoint downstream dependencies to enable a seamless experience for business users, all thanks to data lineage
- Halt the propagation of data quality anomalies with Sifflet’s Flow Stopper


Still have a question in mind ?
Contact Us
Frequently asked questions
Can Sifflet support real-time metrics and monitoring for AI pipelines?
Absolutely! While Sifflet’s monitors are typically scheduled, you can run them on demand using our API. This means you can integrate real-time data quality checks into your AI pipelines, ensuring your models are making decisions based on the freshest and most accurate data available. It's a powerful way to keep your AI systems responsive and reliable.
Why is a centralized Data Catalog important for data reliability and SLA compliance?
A centralized Data Catalog like Sifflet’s plays a key role in ensuring data reliability and SLA compliance by offering visibility into asset health, surfacing incident alerts, and providing real-time metrics. This empowers teams to monitor data pipelines proactively and meet service level expectations more consistently.
Why is combining dbt Core with a data observability platform like Sifflet a smart move?
Combining dbt Core with a data observability platform like Sifflet helps data teams go beyond transformation and into full-stack monitoring. It enables better root cause analysis, reduces time to resolution, and ensures your data products are trustworthy and resilient.
What role do tools like Apache Spark and dbt play in data transformation?
Apache Spark and dbt are powerful tools for managing different aspects of data transformation. Spark is great for large-scale, distributed processing, especially when working with complex transformations and high data volumes. dbt, on the other hand, brings software engineering best practices to SQL-based transformations, making it ideal for analytics engineering. Both tools benefit from integration with observability platforms to ensure transformation pipelines run smoothly and reliably.
What are some of the latest technologies integrated into Sifflet's observability tools?
We've been exploring and integrating a variety of cutting-edge technologies, including dynamic thresholding for anomaly detection, data profiling tools, and telemetry instrumentation. These tools help enhance our pipeline health dashboard and improve transparency in data pipelines.
What role did data quality monitoring play in jobvalley’s success?
Data quality monitoring was key to jobvalley’s success. By using Sifflet’s data observability tools, they were able to validate the accuracy of business-critical tables, helping build trust in their data and supporting confident, data-driven decision-making.
How does MCP support data quality monitoring in modern observability platforms?
MCP helps LLMs become active participants in data quality monitoring by giving them access to structured resources like schema definitions, data validation rules, and profiling metrics. At Sifflet, we use this to detect anomalies, enforce data contracts, and ensure SLA compliance more effectively.
Why is aligning data initiatives with business objectives important for Etam?
At Etam, every data project begins with the question, 'How does this help us reach our OKRs?' This alignment ensures that data initiatives are directly tied to business impact, improving sponsorship and fostering collaboration across departments. It's a great example of business-aligned data strategy in action.



















-p-500.png)
