Proactive access, quality
and control

Empower data teams to detect and address issues proactively by providing them with tools to ensure data availability, usability, integrity, and security.

De-risked data discovery

  • Ensure proactive data quality thanks to a large library of OOTB monitors and a built-in notification system
  • Gain visibility over assets’ documentation and health status on the Data Catalog for safe data discovery
  • Establish the official source of truth for key business concepts using the Business Glossary
  • Leverage custom tagging to classify assets

Structured data observability platform

  • Tailor data visibility for teams by grouping assets in domains that align with the company’s structure
  • Define data ownership to improve accountability and smooth collaboration across teams

Secured data management

Safeguard PII data securely through ML-based PII detection

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

How does Sifflet help with compliance monitoring and audit logging?
Sifflet is ISO 27001 certified and SOC 2 compliant, and we use a separate secret manager to handle credentials securely. This setup ensures a strong audit trail and tight access control, making compliance monitoring and audit logging seamless for your data teams.
What’s a real-world example of Dailymotion using real-time metrics to drive business value?
One standout example is their ad inventory forecasting tool. By embedding real-time metrics into internal tools, sales teams can plan campaigns more precisely and avoid last-minute scrambles. It’s a great case of using data to improve both accuracy and efficiency.
Why is data observability becoming more important in 2024?
Great question! As AI and real-time data products become more widespread, data observability is crucial for ensuring data reliability, privacy, and performance. A strong observability platform helps reduce data chaos by monitoring pipeline health, identifying anomalies, and maintaining SLA compliance across increasingly complex data ecosystems.
How does Sifflet help with monitoring data distribution?
Sifflet makes distribution monitoring easy by using statistical profiling to learn what 'normal' looks like in your data. It then alerts you when patterns drift from those baselines. This helps you maintain SLA compliance and avoid surprises in dashboards or ML models. Plus, it's all automated within our data observability platform so you can focus on solving problems, not just finding them.
What are some best practices for ensuring data quality during transformation?
To ensure high data quality during transformation, start with strong data profiling and cleaning steps, then use mapping and validation rules to align with business logic. Incorporating data lineage tracking and anomaly detection also helps maintain integrity. Observability tools like Sifflet make it easier to enforce these practices and continuously monitor for data drift or schema changes that could affect your pipeline.
How can Sifflet help prevent data disasters like the ones mentioned in the blog?
We built Sifflet to be your data stack's early warning system. Our observability platform offers automated data quality monitoring, anomaly detection, and root cause analysis, so you can identify and resolve issues before they impact your business. Whether you're scaling your pipelines or preparing for AI initiatives, we help you stay in control with confidence.
What is reverse ETL and why is it important in the modern data stack?
Reverse ETL is the process of moving data from your data warehouse into external systems like CRMs or marketing platforms. It plays a crucial role in the modern data stack by enabling operational analytics, allowing business teams to act on real-time metrics and make data-driven decisions directly within their everyday tools.
Why do traditional data contracts often fail in dynamic environments?
Traditional data contracts struggle because they’re static by nature, while modern data systems are constantly evolving. As AI and real-time workloads become more common, these contracts can’t keep up with schema changes, data drift, or business logic updates. That’s why many teams are turning to data observability platforms like Sifflet to bring context, real-time metrics, and trust into the equation.