Proactive access, quality and control
Empower data teams to detect and address issues proactively by providing them with tools to ensure data availability, usability, integrity, and security.


De-risked data discovery
- Ensure proactive data quality thanks to a large library of OOTB monitors and a built-in notification system
- Gain visibility over assets’ documentation and health status on the Data Catalog for safe data discovery
- Establish the official source of truth for key business concepts using the Business Glossary
- Leverage custom tagging to classify assets

Structured data observability platform
- Tailor data visibility for teams by grouping assets in domains that align with the company’s structure
- Define data ownership to improve accountability and smooth collaboration across teams

Secured data management
Safeguard PII data securely through ML-based PII detection


Still have a question in mind ?
Contact Us
Frequently asked questions
How does Shippeo’s use of data pipeline monitoring enhance internal decision-making?
By enriching and aggregating operational data, Shippeo creates a reliable source of truth that supports product and operations teams. Their pipeline health dashboards and observability tools ensure that internal stakeholders can trust the data driving their decisions.
Why is data lineage tracking considered a core pillar of data observability?
Data lineage tracking lets you trace data across its entire lifecycle, from source to dashboard. This visibility is essential for root cause analysis, especially when something breaks. It helps teams move from reactive firefighting to proactive prevention, which is a huge win for maintaining data reliability and meeting SLA compliance standards.
How does Sifflet use AI to enhance data observability?
Sifflet uses AI not just for buzzwords, but to genuinely improve your workflows. From AI-powered metadata generation to dynamic thresholding and intelligent anomaly detection, Sifflet helps teams automate data quality monitoring and make faster, smarter decisions based on real-time insights.
What should I look for when choosing a data observability platform?
Great question! When evaluating a data observability platform, it’s important to focus on real capabilities like root cause analysis, data lineage tracking, and SLA compliance rather than flashy features. Our checklist helps you cut through the noise so you can find a solution that builds trust and scales with your data needs.
Can I see how a business metric is calculated in Sifflet?
Absolutely! With Sifflet’s data lineage tracking, users can view the full column-level lineage from ingestion to consumption. This transparency helps users understand how each metric is computed and how it relates to other data or metrics in the pipeline.
Can data observability improve collaboration across data teams?
Absolutely! With shared visibility into data flows and transformations, observability platforms foster better communication between data engineers, analysts, and business users. Everyone can see what's happening in the pipeline, which encourages ownership and teamwork around data reliability.
How does Sifflet make data observability more accessible to BI users?
Great question! At Sifflet, we're committed to making data observability insights available right where you work. That’s why we’ve expanded beyond our Chrome extension to integrate directly with popular Data Catalogs like Atlan, Alation, Castor, and Data Galaxy. This means BI users can access real-time metrics and data quality insights without ever leaving their workflow.
What role does data lineage play in incident management and alerting?
Data lineage provides visibility into data dependencies, which helps teams assign, prioritize, and resolve alerts more effectively. In an observability platform like Sifflet, this means faster incident response, better alert correlation, and improved on-call management workflows.












-p-500.png)
