Proactive access, quality
and control

Empower data teams to detect and address issues proactively by providing them with tools to ensure data availability, usability, integrity, and security.

De-risked data discovery

  • Ensure proactive data quality thanks to a large library of OOTB monitors and a built-in notification system
  • Gain visibility over assets’ documentation and health status on the Data Catalog for safe data discovery
  • Establish the official source of truth for key business concepts using the Business Glossary
  • Leverage custom tagging to classify assets

Structured data observability platform

  • Tailor data visibility for teams by grouping assets in domains that align with the company’s structure
  • Define data ownership to improve accountability and smooth collaboration across teams

Secured data management

Safeguard PII data securely through ML-based PII detection

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

Can I use Sifflet’s data observability tools with other platforms besides Airbyte?
Absolutely! While we’ve built a powerful solution for Airbyte, our Declarative Lineage API is flexible enough to support other platforms like Kafka, Census, Hightouch, and Talend. You can use our sample Python scripts to integrate lineage from these tools and enhance your overall data observability strategy.
Why is data observability important in a modern data stack?
Data observability is crucial because it ensures your data is reliable, trustworthy, and ready for decision-making. It sits at the top of the modern data stack and helps teams detect issues like data drift, schema changes, or freshness problems before they impact downstream analytics. A strong observability platform like Sifflet gives you peace of mind and helps maintain data quality across all layers.
Why is data lineage tracking considered a core pillar of data observability?
Data lineage tracking lets you trace data across its entire lifecycle, from source to dashboard. This visibility is essential for root cause analysis, especially when something breaks. It helps teams move from reactive firefighting to proactive prevention, which is a huge win for maintaining data reliability and meeting SLA compliance standards.
Can Sifflet support SLA compliance and data governance goals?
Absolutely! Sifflet supports SLA compliance through proactive data quality monitoring and real-time metrics. Its deep metadata integrations and lineage tracking also help organizations enforce data governance policies and maintain trust across the entire data ecosystem.
How does data observability support data governance and compliance?
If you're in a regulated industry or handling sensitive data, observability tools can help you stay compliant. They offer features like audit logging, data freshness checks, and schema validation, which support strong data governance and help ensure SLA compliance.
How does Sifflet handle root cause analysis differently from Monte Carlo?
Sifflet’s AI agent, Sage, performs root cause analysis by combining metadata, query logs, code changes, and historical incidents to build a full narrative of the issue. This speeds up resolution and provides context-rich insights, making it easier to pinpoint and fix data pipeline issues efficiently.
How does data observability fit into a modern data platform?
Data observability is a critical layer of a modern data platform. It helps monitor pipeline health, detect anomalies, and ensure data quality across your stack. With observability tools like Sifflet, teams can catch issues early, perform root cause analysis, and maintain trust in their analytics and reporting.
How can data observability help prevent missed SLAs and unreliable dashboards?
Data observability plays a key role in SLA compliance by detecting issues like ingestion latency, schema changes, or data drift before they impact downstream users. With proper data quality monitoring and real-time metrics, you can catch problems early and keep your dashboards and reports reliable.