Proactive access, quality and control
Empower data teams to detect and address issues proactively by providing them with tools to ensure data availability, usability, integrity, and security.


De-risked data discovery
- Ensure proactive data quality thanks to a large library of OOTB monitors and a built-in notification system
- Gain visibility over assets’ documentation and health status on the Data Catalog for safe data discovery
- Establish the official source of truth for key business concepts using the Business Glossary
- Leverage custom tagging to classify assets

Structured data observability platform
- Tailor data visibility for teams by grouping assets in domains that align with the company’s structure
- Define data ownership to improve accountability and smooth collaboration across teams

Secured data management
Safeguard PII data securely through ML-based PII detection


Still have a question in mind ?
Contact Us
Frequently asked questions
What does it mean to treat data as a product?
Treating data as a product means managing data with the same care and strategy as a traditional product. It involves packaging, maintaining, and delivering high-quality data that serves a specific purpose or audience. This approach improves data reliability and makes it easier to monetize or use for strategic decision-making.
How does Sifflet help with SLA compliance for business metrics?
By combining real-time metrics monitoring with proactive alerts and incident management workflows, Sifflet helps teams stay on top of SLA compliance. Users can track metrics freshness, detect anomalies, and take action before SLA breaches occur.
How does Sifflet support data governance at scale?
Sifflet supports scalable data governance by letting you tag declared assets, assign owners, and classify sensitive data like PII. This ensures compliance with regulations and improves collaboration across teams using a centralized observability platform.
How does schema evolution impact batch and streaming data observability?
Schema evolution can introduce unexpected fields or data type changes that disrupt both batch and streaming data workflows. With proper data pipeline monitoring and observability tools, you can track these changes in real time and ensure your systems adapt without losing data quality or breaking downstream processes.
What should I look for in a modern data discovery tool?
Look for features like self-service discovery, automated metadata collection, and end-to-end data lineage. Scalability is key too, especially as your data grows. Tools like Sifflet also integrate data observability, so you can monitor data quality and pipeline health while exploring your data assets.
What is data observability, and why is it important for companies like Hypebeast?
Data observability is the ability to understand the health, reliability, and quality of data across your ecosystem. For a data-driven company like Hypebeast, it helps ensure that insights are accurate and trustworthy, enabling better decision-making across teams.
What is data volume and why is it so important to monitor?
Data volume refers to the quantity of data flowing through your pipelines. Monitoring it is critical because sudden drops, spikes, or duplicates can quietly break downstream logic and lead to incomplete analysis or compliance risks. With proper data volume monitoring in place, you can catch these anomalies early and ensure data reliability across your organization.
What can I expect to learn from Sifflet’s session on cataloging and monitoring data assets?
Our Head of Product, Martin Zerbib, will walk you through how Sifflet enables data lineage tracking, real-time metrics, and data profiling at scale. You’ll get a sneak peek at our roadmap and see how we’re making data more accessible and reliable for teams of all sizes.



















-p-500.png)
