Proactive access, quality
and control

Empower data teams to detect and address issues proactively by providing them with tools to ensure data availability, usability, integrity, and security.

De-risked data discovery

  • Ensure proactive data quality thanks to a large library of OOTB monitors and a built-in notification system
  • Gain visibility over assets’ documentation and health status on the Data Catalog for safe data discovery
  • Establish the official source of truth for key business concepts using the Business Glossary
  • Leverage custom tagging to classify assets

Structured data observability platform

  • Tailor data visibility for teams by grouping assets in domains that align with the company’s structure
  • Define data ownership to improve accountability and smooth collaboration across teams

Secured data management

Safeguard PII data securely through ML-based PII detection

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

Why does query formatting matter in modern data operations?
Well-formatted queries are easier to debug, share, and maintain. This aligns with DataOps best practices and supports transparency in data pipelines, which is essential for consistent SLA compliance and proactive monitoring.
Is this feature scalable for large datasets and multiple data assets?
Yes, it is! With Sifflet’s auto-coverage and observability tools, you can monitor distribution deviation at scale with just a few clicks. Whether you're working with batch data observability or streaming data monitoring, Sifflet has you covered with automated, scalable insights.
How can I avoid breaking reports and dashboards during migration?
To prevent disruptions, it's essential to use data lineage tracking. This gives you visibility into how data flows through your systems, so you can assess downstream impacts before making changes. It’s a key part of data pipeline monitoring and helps maintain trust in your analytics.
What role does real-time monitoring play in Sifflet’s platform?
Real-time metrics are essential for proactive data pipeline monitoring. Sifflet’s observability tools provide real-time alerts and anomaly detection, helping teams quickly identify and resolve issues before they impact downstream systems or violate SLA compliance.
How does Sifflet help with data freshness monitoring?
At Sifflet, we offer a powerful Freshness Monitor that tracks when your data arrives and alerts you if it's missing or delayed. Whether you're working with batch or streaming pipelines, our observability platform makes it easy to stay on top of data freshness and ensure your analytics stay accurate and timely.
Why is table-level lineage important for data quality monitoring and governance?
Table-level lineage helps you understand how data flows through your systems, which is essential for data quality monitoring and data governance. It supports impact analysis, pipeline debugging, and compliance by showing how changes in upstream tables affect downstream assets.
What exactly is data observability, and how is it different from traditional data monitoring?
Great question! Data observability goes beyond traditional data monitoring by not only detecting when something breaks in your data pipelines, but also understanding why it matters. While monitoring might tell you a pipeline failed, data observability connects that failure to business impact—like whether your CFO’s dashboard is now showing outdated numbers. It's about trust, context, and actionability.
Will dbt Impact Analysis be available for other version control tools?
Yes! While it currently supports GitHub and GitLab, Sifflet is actively working on bringing dbt Impact Analysis to Bitbucket. This expansion ensures broader coverage and supports more teams in achieving better data governance and observability.