Proactive access, quality
and control

Empower data teams to detect and address issues proactively by providing them with tools to ensure data availability, usability, integrity, and security.

De-risked data discovery

  • Ensure proactive data quality thanks to a large library of OOTB monitors and a built-in notification system
  • Gain visibility over assets’ documentation and health status on the Data Catalog for safe data discovery
  • Establish the official source of truth for key business concepts using the Business Glossary
  • Leverage custom tagging to classify assets

Structured data observability platform

  • Tailor data visibility for teams by grouping assets in domains that align with the company’s structure
  • Define data ownership to improve accountability and smooth collaboration across teams

Secured data management

Safeguard PII data securely through ML-based PII detection

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

Can Sifflet detect anomalies in my data pipelines?
Yes, it can! Sifflet uses machine learning for anomaly detection, helping you catch unexpected changes in data volume or quality. You can even label anomalies to improve the model's accuracy over time, reducing alert fatigue and improving incident response automation.
Why is data observability becoming so important for businesses in 2025?
Great question! As Salma Bakouk shared in our recent webinar, data observability is critical because it builds trust and reliability across your data ecosystem. With poor data quality costing companies an average of $13 million annually, having a strong observability platform helps teams proactively detect issues, ensure data freshness, and align analytics efforts with business goals.
What kinds of metrics can retailers track with advanced observability tools?
Retailers can track a wide range of metrics such as inventory health, stock obsolescence risks, carrying costs, and dynamic safety stock levels. These observability dashboards offer time-series analysis and predictive insights that support better decision-making and improve overall data reliability.
Can Sifflet help with root cause analysis when data issues arise?
Absolutely! Sifflet’s field-level data lineage tracking lets you trace data issues from BI dashboards all the way back to source systems. Its AI agent, Sage, even recalls past incidents to suggest likely causes, making root cause analysis faster and more accurate for data engineers and analysts alike.
What kind of real-time alerts can I expect with Sifflet and dbt together?
With Sifflet and dbt working together, you get real-time alerts delivered straight to your favorite tools like Slack, Microsoft Teams, or email. Whether a dbt test fails or a data anomaly is detected, your team will be notified immediately, helping you respond quickly and maintain data quality monitoring at all times.
What should I consider when choosing a data observability tool?
When selecting a data observability tool, consider your data stack, team size, and specific needs like anomaly detection, metrics collection, or schema registry integration. Whether you're looking for open source observability options or a full-featured commercial platform, make sure it supports your ecosystem and scales with your data operations.
Can Sifflet integrate with our existing data tools and platforms?
Absolutely! Sifflet is designed to integrate seamlessly with your current stack. We support a wide range of tools including Airflow, Snowflake, AWS Glue, and more. Our goal is to provide complete pipeline orchestration visibility and data freshness checks, all from one intuitive interface.
How does data observability differ from traditional data quality monitoring?
Great question! While data quality monitoring focuses on detecting when data doesn't meet expected thresholds, data observability goes further. It continuously collects signals like metrics, metadata, and lineage to provide context and root cause analysis when issues arise. Essentially, observability helps you not only detect anomalies but also understand and fix them faster, making it a more proactive and scalable approach.