Mitigate disruption and risks

Customers choose Sifflet for migrations because it unifies lineage, monitoring, and triage in one place, giving teams clear, business-relevant insights without tool-switching. Its AI speeds up root cause analysis, learns your environment, and cuts manual effort, typically going live in under an hour and scaling fully in six weeks.

Pre-Migration: Baseline and Prepare

Create a complete inventory and establish trust baselines before any data is moved.

What Sifflet enables

End-to-end lineage mapping across your on-prem estate, so you know exactly which tables, dashboards, and KPIs depend on each other before changing pipelines.

Automated data profiling and health scoring to establish quality baselines (volumes, distributions, freshness, schema shape) for every critical asset.

Domain-level ownership so each business area knows its scope and responsibilities ahead of the migration.

Monitors as Code to version and package all checks that will run pre- and post-migration.

Outcome: A clear, auditable understanding of what “good” looks like before the first batch of data is moved.

During Migration: Parallel Validation and Controlled Cutover

Continuously validate data between your on-prem and Snowflake environments.

What Sifflet enables

Automated cross-environment comparison checks using custom SQL monitors, dynamic tests, and Sifflet’s failing-rows view.

Adaptive anomaly detection with seasonal awareness to catch regressions introduced by new pipelines or refactored logic.

Incident-centric workflow to consolidate related alerts, generate AI-driven root cause analysis, and route to the right domain team.

Field-level lineage to understand the blast radius of every upstream change as migration waves progress.

Outcome: Fast detection of mismatches, broken joins, missing data, or schema drift without manual spot-checking.

Post-Migration: Stabilise and Scale

Ensure production-grade reliability in Snowflake after cutover.

What Sifflet enables

Auto-coverage and Monitor Recommendations (Sentinel) to close blind spots and automatically instrument new Snowflake tables.

BI-embedded notifications (Power BI, Tableau, Looker) to alert business teams when downstream metrics change.

Data Product views and SLAs to formalise trust in the new ecosystem and expose quality metrics to stakeholders.

Cost-efficient observability with workload tagging and percent compute overhead to keep Snowflake spend predictable.

Outcome: A stable, trusted Snowflake environment with observability built in, not bolted on.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

How is data freshness different from latency or timeliness?
Great question! While these terms are often used interchangeably, they each mean something different. Data freshness is about how up-to-date your data is. Latency measures the delay from data generation to availability, and timeliness refers to whether that data arrives within expected time windows. Understanding these differences is key to effective data pipeline monitoring and SLA compliance.
Why does query formatting matter in modern data operations?
Well-formatted queries are easier to debug, share, and maintain. This aligns with DataOps best practices and supports transparency in data pipelines, which is essential for consistent SLA compliance and proactive monitoring.
How does Sifflet support data lineage tracking and governance?
Sifflet’s unified data catalog and observability features bring context-rich insights into your data workflows. This integration enhances data lineage tracking and supports stronger data governance by giving teams a holistic view of how data flows and transforms across your systems.
Can Sifflet help with root cause analysis when there's a data issue?
Absolutely. Sifflet's built-in data lineage tracking plays a key role in root cause analysis. If a dashboard shows unexpected data, teams can trace the issue upstream through the lineage graph, identify where the problem started, and resolve it faster. This visibility makes troubleshooting much more efficient and collaborative.
Can I use Sifflet’s data observability tools with other platforms besides Airbyte?
Absolutely! While we’ve built a powerful solution for Airbyte, our Declarative Lineage API is flexible enough to support other platforms like Kafka, Census, Hightouch, and Talend. You can use our sample Python scripts to integrate lineage from these tools and enhance your overall data observability strategy.
Which ingestion tools work best with cloud data observability platforms?
Popular ingestion tools like Fivetran, Stitch, and Apache Kafka integrate well with cloud data observability platforms. They offer strong support for telemetry instrumentation, real-time ingestion, and schema registry integration. Pairing them with observability tools ensures your data stays reliable and actionable across your entire stack.
What’s next for Sifflet’s metrics observability capabilities?
We’re expanding support to more BI and transformation tools beyond Looker, and enhancing our ML-based monitoring to group business metrics by domain. This will improve consistency and make it even easier for users to explore metrics across the semantic layer.
How do I ensure SLA compliance during a cloud migration?
Ensuring SLA compliance means keeping a close eye on metrics like throughput, resource utilization, and error rates. A robust observability platform can help you track these metrics in real time, so you stay within your service level objectives and keep stakeholders confident.