Mitigate disruption and risks

Customers choose Sifflet for migrations because it unifies lineage, monitoring, and triage in one place, giving teams clear, business-relevant insights without tool-switching. Its AI speeds up root cause analysis, learns your environment, and cuts manual effort, typically going live in under an hour and scaling fully in six weeks.

Pre-Migration: Baseline and Prepare

Create a complete inventory and establish trust baselines before any data is moved.

What Sifflet enables

End-to-end lineage mapping across your on-prem estate, so you know exactly which tables, dashboards, and KPIs depend on each other before changing pipelines.

Automated data profiling and health scoring to establish quality baselines (volumes, distributions, freshness, schema shape) for every critical asset.

Domain-level ownership so each business area knows its scope and responsibilities ahead of the migration.

Monitors as Code to version and package all checks that will run pre- and post-migration.

Outcome: A clear, auditable understanding of what “good” looks like before the first batch of data is moved.

During Migration: Parallel Validation and Controlled Cutover

Continuously validate data between your on-prem and Snowflake environments.

What Sifflet enables

Automated cross-environment comparison checks using custom SQL monitors, dynamic tests, and Sifflet’s failing-rows view.

Adaptive anomaly detection with seasonal awareness to catch regressions introduced by new pipelines or refactored logic.

Incident-centric workflow to consolidate related alerts, generate AI-driven root cause analysis, and route to the right domain team.

Field-level lineage to understand the blast radius of every upstream change as migration waves progress.

Outcome: Fast detection of mismatches, broken joins, missing data, or schema drift without manual spot-checking.

Post-Migration: Stabilise and Scale

Ensure production-grade reliability in Snowflake after cutover.

What Sifflet enables

Auto-coverage and Monitor Recommendations (Sentinel) to close blind spots and automatically instrument new Snowflake tables.

BI-embedded notifications (Power BI, Tableau, Looker) to alert business teams when downstream metrics change.

Data Product views and SLAs to formalise trust in the new ecosystem and expose quality metrics to stakeholders.

Cost-efficient observability with workload tagging and percent compute overhead to keep Snowflake spend predictable.

Outcome: A stable, trusted Snowflake environment with observability built in, not bolted on.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

What is data observability and why is it important?
Data observability is the ability to monitor, understand, and troubleshoot data systems using real-time metrics and contextual insights. It's important because it helps teams detect and resolve issues quickly, ensuring data reliability and reducing the risk of bad data impacting business decisions.
What exactly is data freshness, and why does it matter so much in data observability?
Data freshness refers to how current your data is relative to the real-world events it's meant to represent. In data observability, it's one of the most critical metrics because even accurate data can lead to poor decisions if it's outdated. Whether you're monitoring financial trades or patient records, stale data can have serious business consequences.
What’s the best way to prevent bad data from impacting our business decisions?
Preventing bad data starts with proactive data quality monitoring. That includes data profiling, defining clear KPIs, assigning ownership, and using observability tools that provide real-time metrics and alerts. Integrating data lineage tracking also helps you quickly identify where issues originate in your data pipelines.
How does Sifflet help with data discovery across different tools like Snowflake and BigQuery?
Great question! Sifflet acts as a unified observability platform that consolidates metadata from tools like Snowflake and BigQuery into one centralized Data Catalog. By surfacing tags, labels, and schema details, it makes data discovery and governance much easier for all stakeholders.
How does Sifflet help improve data discovery across my organization?
Sifflet consolidates metadata from your entire data stack into a centralized Data Catalog, making it easier for data stakeholders to discover, understand, and trust data. With features like enriched metadata, Snowflake tags, and BigQuery labels, data discovery becomes faster and more intuitive, reducing time spent searching for the right assets.
How does data observability differ from traditional data quality monitoring?
Great question! Traditional data quality monitoring focuses on pre-defined rules and tests, but it often falls short when unexpected issues arise. Data observability, on the other hand, provides end-to-end visibility using telemetry instrumentation like metrics, metadata, and lineage. This makes it possible to detect anomalies in real time and troubleshoot issues faster, even in complex data environments.
How does a data catalog improve data reliability and governance?
A well-managed data catalog enhances data reliability by capturing metadata like data lineage, ownership, and quality indicators. It supports data governance by enforcing access controls and documenting compliance requirements, making it easier to meet regulatory standards and ensure trustworthy analytics across the organization.
How did Sifflet help reduce onboarding time for new data team members at jobvalley?
Sifflet’s data catalog provided a clear and organized view of jobvalley’s data assets, making it much easier for new team members to understand the data landscape. This significantly cut down onboarding time and helped new hires become productive faster.