Mitigate disruption and risks

Optimize the management of data assets during each stage of a cloud migration.

Before migration

  • Go through an inventory of what needs to be migrated using the Data Catalog
  • Identify the most critical assets to prioritize migration efforts based on actual asset usage
  • Leverage lineage to identify downstream impact of the migration in order to plan accordingly

During migration

  • Use the Data Catalog to confirm all the data was backed up appropriately
  • Ensure the new environment matches the incumbent via dedicated monitors

After migration

  • Swiftly document and classify new pipelines thanks to Sifflet AI Assistant
  • Define data ownership to improve accountability and simplify maintenance of new data pipelines
  • Monitor new pipelines to ensure the robustness of data foundations over time
  • Leverage lineage to better understand newly built data flows

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

Can MCP help with data pipeline monitoring and incident response?
Absolutely! MCP allows LLMs to remember past interactions and call diagnostic tools, which is a game-changer for data pipeline monitoring. It supports multi-turn conversations and structured tool use, making incident response faster and more contextual. This means less time spent digging through logs and more time resolving issues efficiently.
How does Sifflet help Adaptavist detect issues before they impact stakeholders?
Sifflet enables real-time metrics and data freshness checks that surface anomalies before they escalate. With features like alerting, lineage tracking, and pre-prod validation, teams at Adaptavist can spot and fix problems early, reducing surprise outages and improving SLA compliance.
What are some common reasons data freshness breaks down in a pipeline?
Freshness issues often start with delays in source systems, ingestion bottlenecks, slow transformation jobs, or even caching problems in dashboards. That's why a strong observability platform needs to monitor every stage of the pipeline, from ingestion latency to delivery, to ensure data reliability and timely decision-making.
What kind of monitoring capabilities does Sifflet offer out of the box?
Sifflet comes with a powerful library of pre-built monitors for data profiling, data freshness checks, metrics health, and more. These templates are easily customizable, supporting both batch data observability and streaming data monitoring, so you can tailor them to your specific data pipelines.
Why is semantic quality monitoring important for AI applications?
Semantic quality monitoring ensures that the data feeding into your AI models is contextually accurate and production-ready. At Sifflet, we're making this process seamless with tools that check for data drift, validate schema, and maintain high data quality without manual intervention.
Why should companies invest in data pipeline monitoring?
Data pipeline monitoring helps teams stay on top of ingestion latency, schema changes, and unexpected drops in data freshness. Without it, issues can go unnoticed and lead to broken dashboards or faulty decisions. With tools like Sifflet, you can set up real-time alerts and reduce downtime through proactive monitoring.
How does metadata management support data governance?
Strong metadata management allows organizations to capture details about data sources, schemas, and lineage, which is essential for enforcing data governance policies. It also supports compliance monitoring and improves overall data reliability by making data more transparent and trustworthy.
Why are data teams moving away from Monte Carlo to newer observability tools?
Many teams are looking for more flexible and cost-efficient observability tools that offer better business user access and faster implementation. Monte Carlo, while a pioneer, has become known for its high costs, limited customization, and lack of business context in alerts. Newer platforms like Sifflet and Metaplane focus on real-time metrics, cross-functional collaboration, and easier setup, making them more appealing for modern data teams.