Mitigate disruption and risks

Customers choose Sifflet for migrations because it unifies lineage, monitoring, and triage in one place, giving teams clear, business-relevant insights without tool-switching. Its AI speeds up root cause analysis, learns your environment, and cuts manual effort, typically going live in under an hour and scaling fully in six weeks.

Pre-Migration: Baseline and Prepare

Create a complete inventory and establish trust baselines before any data is moved.

What Sifflet enables

End-to-end lineage mapping across your on-prem estate, so you know exactly which tables, dashboards, and KPIs depend on each other before changing pipelines.

Automated data profiling and health scoring to establish quality baselines (volumes, distributions, freshness, schema shape) for every critical asset.

Domain-level ownership so each business area knows its scope and responsibilities ahead of the migration.

Monitors as Code to version and package all checks that will run pre- and post-migration.

Outcome: A clear, auditable understanding of what “good” looks like before the first batch of data is moved.

During Migration: Parallel Validation and Controlled Cutover

Continuously validate data between your on-prem and Snowflake environments.

What Sifflet enables

Automated cross-environment comparison checks using custom SQL monitors, dynamic tests, and Sifflet’s failing-rows view.

Adaptive anomaly detection with seasonal awareness to catch regressions introduced by new pipelines or refactored logic.

Incident-centric workflow to consolidate related alerts, generate AI-driven root cause analysis, and route to the right domain team.

Field-level lineage to understand the blast radius of every upstream change as migration waves progress.

Outcome: Fast detection of mismatches, broken joins, missing data, or schema drift without manual spot-checking.

Post-Migration: Stabilise and Scale

Ensure production-grade reliability in Snowflake after cutover.

What Sifflet enables

Auto-coverage and Monitor Recommendations (Sentinel) to close blind spots and automatically instrument new Snowflake tables.

BI-embedded notifications (Power BI, Tableau, Looker) to alert business teams when downstream metrics change.

Data Product views and SLAs to formalise trust in the new ecosystem and expose quality metrics to stakeholders.

Cost-efficient observability with workload tagging and percent compute overhead to keep Snowflake spend predictable.

Outcome: A stable, trusted Snowflake environment with observability built in, not bolted on.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

Is Sifflet suitable for business users as well as engineers?
Absolutely! Sifflet’s user-friendly interface and clear data asset indicators make it easy for business users to find and trust the right data. With features like visual data discovery and real-time metrics, it bridges the gap between technical teams and business stakeholders.
How does data ingestion relate to data observability?
Great question! Data ingestion is where observability starts. Once data enters your system, observability platforms like Sifflet help monitor its quality, detect anomalies, and ensure data freshness. This allows teams to catch ingestion issues early, maintain SLA compliance, and build trust in their data pipelines.
Who benefits from implementing a data observability platform like Sifflet?
Honestly, anyone who relies on data to make decisions—so pretty much everyone. Data engineers, BI teams, data scientists, RevOps, finance, and even executives all benefit. With Sifflet, teams get proactive alerts, root cause analysis, and cross-functional visibility. That means fewer surprises, faster resolutions, and more trust in the data that powers your business.
Can I customize how alerts are routed to ServiceNow from Sifflet?
Absolutely! You can customize routing based on alert metadata like domain, severity, or affected system. This ensures the right team gets notified without any manual triage, making your data pipeline monitoring more actionable and reliable.
How can observability platforms help with compliance and audit logging?
Observability platforms like Sifflet support compliance monitoring by tracking who accessed what data, when, and how. We help teams meet GDPR, NERC CIP, and other regulatory requirements through audit logging, data governance tools, and lineage visibility. It’s all about making sure your data is not just stored safely but also traceable and verifiable.
What features should we look for in a data observability tool?
A great data observability tool should offer automated data quality checks like data freshness checks and schema change detection, field-level data lineage tracking for root cause analysis, and a powerful metadata search engine. These capabilities streamline incident response and help maintain data governance across your entire stack.
What role does data pipeline monitoring play in Dailymotion’s delivery optimization?
By rebuilding their pipelines with strong data pipeline monitoring, Dailymotion reduced storage costs, improved performance, and ensured consistent access to delivery data. This helped eliminate data sprawl and created a single source of truth for operational teams.
What is data lineage and why is it important for data teams?
Data lineage is a visual map that shows how data flows from its source through transformations to its final destination, like dashboards or ML models. It's essential for data teams because it enables faster root cause analysis, improves data trust, and supports smarter change management. When paired with a data observability platform like Sifflet, lineage becomes a powerful tool for tracking data quality and ensuring SLA compliance.