Mitigate disruption and risks
Optimize the management of data assets during each stage of a cloud migration.


Before migration
- Go through an inventory of what needs to be migrated using the Data Catalog
- Identify the most critical assets to prioritize migration efforts based on actual asset usage
- Leverage lineage to identify downstream impact of the migration in order to plan accordingly
.avif)
During migration
- Use the Data Catalog to confirm all the data was backed up appropriately
- Ensure the new environment matches the incumbent via dedicated monitors

After migration
- Swiftly document and classify new pipelines thanks to Sifflet AI Assistant
- Define data ownership to improve accountability and simplify maintenance of new data pipelines
- Monitor new pipelines to ensure the robustness of data foundations over time
- Leverage lineage to better understand newly built data flows


Still have a question in mind ?
Contact Us
Frequently asked questions
How does integrating a data catalog with observability tools improve pipeline monitoring?
When integrated with observability tools, a data catalog becomes more than documentation. It provides real-time metrics, data freshness checks, and anomaly detection, allowing teams to proactively monitor pipeline health and quickly respond to issues. This integration enables faster root cause analysis and more reliable data delivery.
Can SQL Table Tracer be integrated into a broader observability platform?
Absolutely! SQL Table Tracer is designed with a minimal API and modular architecture, making it easy to plug into larger observability platforms. It provides the foundational data needed for building features like data lineage tracking, pipeline health dashboards, and SLA monitoring.
Is Forge able to automatically fix data issues in my pipelines?
Forge doesn’t take action on its own, but it does provide smart, contextual guidance based on past fixes. It helps teams resolve issues faster while keeping you in full control of the resolution process, which is key for maintaining SLA compliance and data quality monitoring.
What’s the difference between a data catalog and a storage platform in observability?
A great distinction! Storage platforms hold your actual data, while a data catalog helps you understand what that data means. Sifflet connects both, so when we detect an anomaly, the catalog tells you what business process is affected and who should be notified. It’s how we turn raw telemetry into actionable insights for better incident response automation and SLA compliance.
How do modern storage platforms like Snowflake and S3 support observability tools?
Modern platforms like Snowflake and Amazon S3 expose rich metadata and access patterns that observability tools can monitor. For example, Sifflet integrates with Snowflake to track schema changes, data freshness, and query patterns, while S3 integration enables us to monitor ingestion latency and file structure changes. These capabilities are key for real-time metrics and data quality monitoring.
How does Sifflet support SLA compliance and proactive monitoring?
With real-time metrics and intelligent alerting, Sifflet helps ensure SLA compliance by detecting issues early and offering root cause analysis. Its proactive monitoring features, like dynamic thresholding and auto-remediation suggestions, keep your data pipelines healthy and responsive.
How is AI shaping the future of data observability?
AI enhances data observability with advanced anomaly detection, predictive analytics, and automated root cause analysis. This helps teams identify and resolve issues faster while reducing manual effort. Have a look at how Sifflet is leveraging AI for better data observability here
Is this feature part of Sifflet’s larger observability platform?
Yes, dbt Impact Analysis is a key addition to Sifflet’s observability platform. It integrates seamlessly into your GitHub or GitLab workflows and complements other features like data lineage tracking and data quality monitoring to provide holistic data observability.