Mitigate disruption and risks

Customers choose Sifflet for migrations because it unifies lineage, monitoring, and triage in one place, giving teams clear, business-relevant insights without tool-switching. Its AI speeds up root cause analysis, learns your environment, and cuts manual effort, typically going live in under an hour and scaling fully in six weeks.

Pre-Migration: Baseline and Prepare

Create a complete inventory and establish trust baselines before any data is moved.

What Sifflet enables

End-to-end lineage mapping across your on-prem estate, so you know exactly which tables, dashboards, and KPIs depend on each other before changing pipelines.

Automated data profiling and health scoring to establish quality baselines (volumes, distributions, freshness, schema shape) for every critical asset.

Domain-level ownership so each business area knows its scope and responsibilities ahead of the migration.

Monitors as Code to version and package all checks that will run pre- and post-migration.

Outcome: A clear, auditable understanding of what “good” looks like before the first batch of data is moved.

During Migration: Parallel Validation and Controlled Cutover

Continuously validate data between your on-prem and Snowflake environments.

What Sifflet enables

Automated cross-environment comparison checks using custom SQL monitors, dynamic tests, and Sifflet’s failing-rows view.

Adaptive anomaly detection with seasonal awareness to catch regressions introduced by new pipelines or refactored logic.

Incident-centric workflow to consolidate related alerts, generate AI-driven root cause analysis, and route to the right domain team.

Field-level lineage to understand the blast radius of every upstream change as migration waves progress.

Outcome: Fast detection of mismatches, broken joins, missing data, or schema drift without manual spot-checking.

Post-Migration: Stabilise and Scale

Ensure production-grade reliability in Snowflake after cutover.

What Sifflet enables

Auto-coverage and Monitor Recommendations (Sentinel) to close blind spots and automatically instrument new Snowflake tables.

BI-embedded notifications (Power BI, Tableau, Looker) to alert business teams when downstream metrics change.

Data Product views and SLAs to formalise trust in the new ecosystem and expose quality metrics to stakeholders.

Cost-efficient observability with workload tagging and percent compute overhead to keep Snowflake spend predictable.

Outcome: A stable, trusted Snowflake environment with observability built in, not bolted on.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

Why is semantic quality monitoring important for AI applications?
Semantic quality monitoring ensures that the data feeding into your AI models is contextually accurate and production-ready. At Sifflet, we're making this process seamless with tools that check for data drift, validate schema, and maintain high data quality without manual intervention.
How has the shift from ETL to ELT improved performance?
The move from ETL to ELT has been all about speed and flexibility. By loading raw data directly into cloud data warehouses before transforming it, teams can take advantage of powerful in-warehouse compute. This not only reduces ingestion latency but also supports more scalable and cost-effective analytics workflows. It’s a big win for modern data teams focused on performance and throughput metrics.
What are some common data quality issues that can be prevented with the right tools?
Common issues like schema changes, missing values, and data drift can all be caught early with effective data quality monitoring. Tools that offer features like threshold-based alerts, data freshness checks, and pipeline health dashboards make it easier to prevent these problems before they affect downstream systems.
How does Sifflet help teams improve data accessibility across the organization?
Great question! Sifflet makes data accessibility a breeze by offering intuitive search features and AI-generated metadata, so both technical and non-technical users can easily find and understand the data they need. This helps break down silos and supports better collaboration, which is a key component of effective data observability.
Can open-source ETL tools support data observability needs?
Yes, many open-source ETL tools like Airbyte or Talend can be extended to support observability features. By integrating them with a cloud data observability platform like Sifflet, you can add layers of telemetry instrumentation, anomaly detection, and alerting. This ensures your open-source stack remains robust, reliable, and ready for scale.
Can I use custom dbt metadata for data governance in Sifflet?
Absolutely! Our new dbt tab surfaces custom metadata defined in your dbt models, which you can leverage for better data governance and data profiling. It’s all about giving you the flexibility to manage your data assets exactly the way you need.
What should a solid data quality monitoring framework include?
A strong data quality monitoring framework should be scalable, rule-based and powered by AI for anomaly detection. It should support multiple data sources and provide actionable insights, not just alerts. Tools that enable data drift detection, schema validation and real-time alerts can make a huge difference in maintaining data integrity across your pipelines.
How did Sifflet help reduce onboarding time for new data team members at jobvalley?
Sifflet’s data catalog provided a clear and organized view of jobvalley’s data assets, making it much easier for new team members to understand the data landscape. This significantly cut down onboarding time and helped new hires become productive faster.