Data User

Take control of your decisions. Sifflet gives business users unmatched clarity and trust in their data, driving smarter actions with ease.

Data Freshness and Reliability

Sifflet gives data users visibility into when data was last updated, and alerts when source data changes unexpectedly, so you’ll always know the status of your numbers.

Self-Service Troubleshooting

Vetting data quality has often been tough. Sifflet makes it easier and simpler to trace unusual values thanks to data lineage, and get historical context of data changes and updates.

Analysis Confidence

You’ll be able to analyze numbers with confidence thanks to knowledge of who owns and maintains different data assets and verify data accuracy before sharing insights.

Superior Insights. Check.

Sifflet makes it easier to gain strategic insights about your market, products, and customers. By ensuring the highest levels of data quality, your teams can make the best possible strategic decisions for your company, unlocking new levels of performance that help you compete in the age of AI.

Never Question Your Numbers Again.

Sifflet gives you the ultimate confidence in your data products and dashboards. By ensuring that your data is monitored and triaged night and day, you can always be sure of the freshness, accuracy, and quality of your numbers.

See Value From Day One.

Sifflet connects to hundreds of tools already in your stack and offers out-of-the-box monitors and tooling so you can start seeing value from day one.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How does Sifflet stand out among other data observability tools?
Sifflet takes a unique approach by addressing data reliability as both an engineering and business challenge. Our observability platform offers end-to-end coverage, business context, and a collaboration layer that aligns technical teams with strategic outcomes, making it easier to maintain analytics and AI-ready data.
Who are some of the companies using Sifflet’s observability tools?
We're proud to work with amazing organizations like St-Gobain, Penguin Random House, and Euronext. These enterprises rely on Sifflet for cloud data observability, data lineage tracking, and proactive monitoring to ensure their data is always AI-ready and analytics-friendly.
How does aligning data observability with business objectives improve outcomes?
Aligning data observability with business goals transforms data from a technical asset into a strategic one. By setting clear KPIs and linking data quality monitoring to business impact, teams can make smarter decisions, improve SLA compliance, and drive real value from their data investments.
What makes Carrefour’s approach to observability scalable and effective?
Carrefour’s approach combines no-code self-service tools with as-code automation, making it easy for both technical and non-technical users to adopt. This balance, along with incremental implementation and cultural emphasis on data quality, supports scalable observability across the organization.
What kind of health scoring does Adaptavist use for their data assets?
Adaptavist built a platform health dashboard that scores each asset based on data freshness, quality, and reliability. This kind of data profiling helps them prioritize fixes, improve root cause analysis, and ensure continued trust in their analytics pipeline observability.
What are some engineering challenges around the 'right to be forgotten' under GDPR?
The 'right to be forgotten' introduces several technical hurdles. For example, deleting user data across multiple systems, backups, and caches can be tricky. That's where data lineage tracking and pipeline orchestration visibility come in handy. They help you understand dependencies and ensure deletions are complete and safe without breaking downstream processes.
How can executive sponsorship help scale data governance efforts?
Executive sponsorship is essential for scaling data governance beyond grassroots efforts. As organizations mature, top-down support ensures proper budget allocation for observability tools, data pipeline monitoring, and team resources. When leaders are personally invested, it helps shift the mindset from reactive fixes to proactive data quality and governance practices.
What is data volume and why is it so important to monitor?
Data volume refers to the quantity of data flowing through your pipelines. Monitoring it is critical because sudden drops, spikes, or duplicates can quietly break downstream logic and lead to incomplete analysis or compliance risks. With proper data volume monitoring in place, you can catch these anomalies early and ensure data reliability across your organization.