Cost Observability
Cost-efficient data pipelines
Pinpoint cost inefficiencies and anomalies thanks to full-stack data observability.

Data asset optimization
- Leverage lineage and Data Catalog to pinpoint underutilized assets
- Get alerted on unexpected behaviors in data consumption patterns

Proactive data pipeline management
Proactively prevent pipelines from running in case a data quality anomaly is detected


Frequently asked questions
What role does real-time data play in modern analytics pipelines?
Real-time data is becoming a game-changer for analytics, especially in use cases like fraud detection and personalized recommendations. Streaming data monitoring and real-time metrics collection are essential to harness this data effectively, ensuring that insights are both timely and actionable.
Why is full-stack visibility important in data pipelines?
Full-stack visibility is key to understanding how data moves across your systems. With a data observability tool, you get data lineage tracking and metadata insights, which help you pinpoint bottlenecks, track dependencies, and ensure your data is accurate from source to destination.
Can Sifflet integrate with our existing data tools and platforms?
Absolutely! Sifflet is designed to integrate seamlessly with your current stack. We support a wide range of tools including Airflow, Snowflake, AWS Glue, and more. Our goal is to provide complete pipeline orchestration visibility and data freshness checks, all from one intuitive interface.
What tools can help me monitor data consistency between old and new environments?
You can use data profiling and anomaly detection tools to compare datasets before and after migration. These features are often built into modern data observability platforms and help you validate that nothing critical was lost or changed during the move.
Why did jobvalley choose Sifflet over other data catalog vendors?
After evaluating several data catalog vendors, jobvalley selected Sifflet because of its comprehensive features that addressed both data discovery and data quality monitoring. The platform’s ability to streamline onboarding and support real-time metrics made it the ideal choice for their growing data team.
What kinds of alerts can trigger incidents in ServiceNow through Sifflet?
You can trigger incidents from any Sifflet alert, including data freshness checks, schema changes, and pipeline failures. This makes it easier to maintain SLA compliance and improve overall data reliability across your observability platform.
Can historical data access really boost data consumer confidence?
Absolutely! When data consumers can see historical performance through data observability dashboards, it builds transparency and trust. They’re more likely to rely on your data if they know it’s been consistently accurate and well-maintained over time.
Can Flow Stopper work with tools like Airflow and Snowflake?
Absolutely! Flow Stopper supports integration with popular tools like Airflow for orchestration and Snowflake for storage. It can run anomaly detection and data validation rules mid-pipeline, helping ensure data quality as it moves through your stack.