Cost-efficient data pipelines
Pinpoint cost inefficiencies and anomalies thanks to full-stack data observability.


Data asset optimization
- Leverage lineage and Data Catalog to pinpoint underutilized assets
- Get alerted on unexpected behaviors in data consumption patterns

Proactive data pipeline management
Proactively prevent pipelines from running in case a data quality anomaly is detected


Still have a question in mind ?
Contact Us
Frequently asked questions
Why are data consumers becoming more involved in observability decisions?
We’re seeing a big shift where data consumers—like analysts and business users—are finally getting a seat at the table. That’s because data observability impacts everyone, not just engineers. When trust in data is operationalized, it boosts confidence across the business and turns data teams into value creators.
Why is full-stack visibility important in data pipelines?
Full-stack visibility is key to understanding how data moves across your systems. With a data observability tool, you get data lineage tracking and metadata insights, which help you pinpoint bottlenecks, track dependencies, and ensure your data is accurate from source to destination.
Why is data observability becoming essential for data-driven companies?
As more businesses rely on data to drive decisions, ensuring data reliability is critical. Data observability provides transparency into the health of your data assets and pipelines, helping teams catch issues early, stay compliant with SLAs, and ultimately build trust in their data.
How does the shift from ETL to ELT impact data pipeline monitoring?
The move from ETL to ELT allows organizations to load raw data into the warehouse first and transform it later, making pipeline management more flexible and cost-effective. However, it also increases the need for data pipeline monitoring to ensure that transformations happen correctly and on time. Observability tools help track ingestion latency, transformation success, and data drift detection to keep your pipelines healthy.
Why is data governance important when treating data as a product?
Data governance ensures that data is collected, managed, and shared responsibly, which is especially important when data is treated as a product. It helps maintain compliance with regulations and supports data quality monitoring. With proper governance in place, businesses can confidently deliver reliable and secure data products.
Does Sifflet store any of my company’s data?
No, Sifflet does not store your data. We designed our platform to discard any data previews immediately after display, and we only retain metadata like table and column names. This approach supports GDPR compliance and strengthens your overall data governance strategy.
Can I monitor the health of my Firebolt tables in real time with Sifflet?
Absolutely! With Sifflet's observability platform, you can view the health status of your Firebolt tables in real time. This allows for proactive data pipeline monitoring and helps ensure SLA compliance across your analytics workflows.
Why is declarative lineage important for data observability?
Declarative lineage is a game changer because it provides a clear, structured view of how data flows through your systems. This visibility is key for effective data pipeline monitoring, root cause analysis, and data governance. With Sifflet’s approach, you can track upstream and downstream dependencies and ensure your data is reliable and well-managed.



















-p-500.png)
