Cost-efficient data pipelines
Pinpoint cost inefficiencies and anomalies thanks to full-stack data observability.


Data asset optimization
- Leverage lineage and Data Catalog to pinpoint underutilized assets
- Get alerted on unexpected behaviors in data consumption patterns

Proactive data pipeline management
Proactively prevent pipelines from running in case a data quality anomaly is detected


Still have a question in mind ?
Contact Us
Frequently asked questions
What should I look for in a data quality monitoring solution?
You’ll want a solution that goes beyond basic checks like null values and schema validation. The best data quality monitoring tools use intelligent anomaly detection, dynamic thresholding, and auto-generated rules based on data profiling. They adapt as your data evolves and scale effortlessly across thousands of tables. This way, your team can confidently trust the data without spending hours writing manual validation rules.
How can a data observability tool help when my data is often incomplete or inaccurate?
Great question! If you're constantly dealing with missing values, duplicates, or inconsistent formats, a data observability platform can be a game-changer. It provides real-time metrics and data quality monitoring, so you can detect and fix issues before they impact your reports or decisions.
Why is data observability essential when treating data as a product?
Great question! When you treat data as a product, you're committing to delivering reliable, high-quality data to your consumers. Data observability ensures that issues like data drift, broken pipelines, or unexpected anomalies are caught early, so your data stays trustworthy and valuable. It's the foundation for data reliability and long-term success.
How do JOIN strategies affect query execution and data observability?
JOINs can be very resource-intensive if not used correctly. Choosing the right JOIN type and placing conditions in the ON clause helps reduce unnecessary data processing, which is key for effective data observability and real-time metrics tracking.
Can Flow Stopper work with tools like Airflow and Snowflake?
Absolutely! Flow Stopper supports integration with popular tools like Airflow for orchestration and Snowflake for storage. It can run anomaly detection and data validation rules mid-pipeline, helping ensure data quality as it moves through your stack.
How can a strong data platform support SLA compliance and business growth?
A well-designed data platform supports SLA compliance by ensuring data is timely, accurate, and reliable. With features like data drift detection and dynamic thresholding, teams can meet service-level objectives and scale confidently. Over time, this foundation enables faster decisions, stronger products, and better customer experiences.
Why is data observability important for business outcomes?
Data observability helps align technical metrics with strategic business goals. By monitoring real-time metrics and enabling root cause analysis, teams can quickly detect and resolve data issues, reducing downtime and improving decision-making. It’s not just about the data, it’s about the impact that data has on your business.
Can Sifflet detect anomalies in my data pipelines?
Yes, it can! Sifflet uses machine learning for anomaly detection, helping you catch unexpected changes in data volume or quality. You can even label anomalies to improve the model's accuracy over time, reducing alert fatigue and improving incident response automation.



















-p-500.png)
