Cost-efficient data pipelines

Pinpoint cost inefficiencies and anomalies thanks to full-stack data observability.

Data asset optimization

  • Leverage lineage and Data Catalog to pinpoint underutilized assets
  • Get alerted on unexpected behaviors in data consumption patterns

Proactive data pipeline management

Proactively prevent pipelines from running in case a data quality anomaly is detected

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

What does Full Data Stack Observability mean?
Full Data Stack Observability means having complete visibility into every layer of your data pipeline, from ingestion to business intelligence tools. At Sifflet, our observability platform collects signals across your entire stack, enabling anomaly detection, data lineage tracking, and real-time metrics collection. This approach helps teams ensure data reliability and reduce time spent firefighting issues.
Why should data alerts live in ServiceNow?
If your team already uses ServiceNow for incident management, having your data alerts show up there means fewer missed issues and faster resolution times. It brings transparency to your data pipelines and supports better data governance and trust.
What role does data observability play in preventing freshness incidents?
Data observability gives you the visibility to detect freshness problems before they impact the business. By combining metrics like data age, expected vs. actual arrival time, and pipeline health dashboards, observability tools help teams catch delays early, trace where things broke down, and maintain trust in real-time metrics.
What trends in data observability should we watch for in 2025?
In 2025, expect to see more focus on AI-driven anomaly detection, dynamic thresholding, and predictive analytics monitoring. Staying ahead means experimenting with new observability tools, engaging with peers, and continuously aligning your data strategy with evolving business needs.
Is Sifflet suitable for business users as well as engineers?
Absolutely! Sifflet’s user-friendly interface and clear data asset indicators make it easy for business users to find and trust the right data. With features like visual data discovery and real-time metrics, it bridges the gap between technical teams and business stakeholders.
How does data observability improve incident response and SLA compliance?
With data observability, teams get real-time metrics and deep context around data issues. This means faster incident response and better SLA compliance. Sifflet’s observability platform helps you pinpoint root causes quickly, reducing downtime and giving stakeholders confidence in the reliability of your data.
Why are data teams moving away from Monte Carlo to newer observability tools?
Many teams are looking for more flexible and cost-efficient observability tools that offer better business user access and faster implementation. Monte Carlo, while a pioneer, has become known for its high costs, limited customization, and lack of business context in alerts. Newer platforms like Sifflet and Metaplane focus on real-time metrics, cross-functional collaboration, and easier setup, making them more appealing for modern data teams.
What is a data platform and why does it matter?
A data platform is a unified system that helps companies collect, store, process, and analyze data across their organization. It acts as the central nervous system for all data operations, powering dashboards, AI models, and decision-making. When paired with strong data observability, it ensures teams can trust their data and move faster with confidence.