Cost-efficient data pipelines

Pinpoint cost inefficiencies and anomalies thanks to full-stack data observability.

Data asset optimization

  • Leverage lineage and Data Catalog to pinpoint underutilized assets
  • Get alerted on unexpected behaviors in data consumption patterns

Proactive data pipeline management

Proactively prevent pipelines from running in case a data quality anomaly is detected

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

What should I look for in a data quality monitoring solution?
You’ll want a solution that goes beyond basic checks like null values and schema validation. The best data quality monitoring tools use intelligent anomaly detection, dynamic thresholding, and auto-generated rules based on data profiling. They adapt as your data evolves and scale effortlessly across thousands of tables. This way, your team can confidently trust the data without spending hours writing manual validation rules.
How can a data observability tool help when my data is often incomplete or inaccurate?
Great question! If you're constantly dealing with missing values, duplicates, or inconsistent formats, a data observability platform can be a game-changer. It provides real-time metrics and data quality monitoring, so you can detect and fix issues before they impact your reports or decisions.
Why is data observability essential when treating data as a product?
Great question! When you treat data as a product, you're committing to delivering reliable, high-quality data to your consumers. Data observability ensures that issues like data drift, broken pipelines, or unexpected anomalies are caught early, so your data stays trustworthy and valuable. It's the foundation for data reliability and long-term success.
How do JOIN strategies affect query execution and data observability?
JOINs can be very resource-intensive if not used correctly. Choosing the right JOIN type and placing conditions in the ON clause helps reduce unnecessary data processing, which is key for effective data observability and real-time metrics tracking.
Can Flow Stopper work with tools like Airflow and Snowflake?
Absolutely! Flow Stopper supports integration with popular tools like Airflow for orchestration and Snowflake for storage. It can run anomaly detection and data validation rules mid-pipeline, helping ensure data quality as it moves through your stack.
How can a strong data platform support SLA compliance and business growth?
A well-designed data platform supports SLA compliance by ensuring data is timely, accurate, and reliable. With features like data drift detection and dynamic thresholding, teams can meet service-level objectives and scale confidently. Over time, this foundation enables faster decisions, stronger products, and better customer experiences.
Why is data observability important for business outcomes?
Data observability helps align technical metrics with strategic business goals. By monitoring real-time metrics and enabling root cause analysis, teams can quickly detect and resolve data issues, reducing downtime and improving decision-making. It’s not just about the data, it’s about the impact that data has on your business.
Can Sifflet detect anomalies in my data pipelines?
Yes, it can! Sifflet uses machine learning for anomaly detection, helping you catch unexpected changes in data volume or quality. You can even label anomalies to improve the model's accuracy over time, reducing alert fatigue and improving incident response automation.