Cost Observability
Cost-efficient data pipelines
Pinpoint cost inefficiencies and anomalies thanks to full-stack data observability.

Data asset optimization
- Leverage lineage and Data Catalog to pinpoint underutilized assets
- Get alerted on unexpected behaviors in data consumption patterns

Proactive data pipeline management
Proactively prevent pipelines from running in case a data quality anomaly is detected


Frequently asked questions
How does data observability support compliance with regulations like GDPR?
Data observability plays a key role in data governance by helping teams maintain accurate documentation, monitor data flows, and quickly detect anomalies. This proactive monitoring ensures that your data stays compliant with regulations like GDPR and HIPAA, reducing the risk of costly fines and audits.
Why did Adaptavist choose Sifflet over other observability tools?
Callum and his team were impressed by how quickly Sifflet’s cross-repo data lineage tracking gave them visibility into their pipelines. Within days, they had a working proof of concept and were debugging in minutes instead of days. The unified view across their stack made Sifflet the right fit for scaling data observability across teams.
Can SQL Table Tracer be integrated into a broader observability platform?
Absolutely! SQL Table Tracer is designed with a minimal API and modular architecture, making it easy to plug into larger observability platforms. It provides the foundational data needed for building features like data lineage tracking, pipeline health dashboards, and SLA monitoring.
How does Sifflet help with end-to-end data observability?
Sifflet enhances end-to-end data observability by allowing you to declare any asset in your data stack, including custom applications and scripts. This ensures full visibility into your data pipelines and supports comprehensive data lineage tracking and root cause analysis.
How does this integration help with root cause analysis?
By including Fivetran connectors and source assets in the lineage graph, Sifflet gives you full visibility into where data issues originate. This makes it much easier to perform root cause analysis and resolve incidents faster, improving overall data reliability.
Can business users benefit from data observability too, or is it just for engineers?
Absolutely, business users benefit too! Sifflet's UI is built for both technical and non-technical teams. For example, our Chrome extension overlays on BI tools to show real-time metrics and data quality monitoring without needing to write SQL. It helps everyone from analysts to execs make decisions with confidence, knowing the data behind their dashboards is trustworthy.
Can Sifflet help with data quality monitoring directly from the Data Catalog?
Absolutely! Sifflet integrates data quality monitoring into its Data Catalog, allowing users to define and view data quality checks right alongside asset metadata. This gives teams real-time insights into data reliability and helps build trust in the assets they’re using for decision-making.
What is a Single Source of Truth, and why is it so hard to achieve?
A Single Source of Truth (SSOT) is a centralized repository where all organizational data is stored and accessed consistently. While it sounds ideal, achieving it is tough because different tools often measure data in unique ways, leading to multiple interpretations. Ensuring data reliability and consistency across sources is where data observability platforms like Sifflet can make a real difference.