Cost-efficient data pipelines
Pinpoint cost inefficiencies and anomalies thanks to full-stack data observability.


Data asset optimization
- Leverage lineage and Data Catalog to pinpoint underutilized assets
- Get alerted on unexpected behaviors in data consumption patterns

Proactive data pipeline management
Proactively prevent pipelines from running in case a data quality anomaly is detected


Still have a question in mind ?
Contact Us
Frequently asked questions
What are the key components of an end-to-end data platform?
An end-to-end data platform includes layers for ingestion, storage, transformation, orchestration, governance, observability, and analytics. Each part plays a role in making data reliable and actionable. For example, data lineage tracking and real-time metrics collection help ensure transparency and performance across the pipeline.
How does data profiling support GDPR compliance efforts?
Data profiling helps by automatically identifying and tagging personal data across your systems. This is vital for GDPR, where you need to know exactly what PII you have and where it's stored. Combined with data quality monitoring and metadata discovery, profiling makes it easier to manage consent, enforce data contracts, and ensure data security compliance.
What kind of data quality monitoring does Sifflet offer when used with dbt?
When paired with dbt, Sifflet provides robust data quality monitoring by combining dbt test insights with ML-based rules and UI-defined validations. This helps you close test coverage gaps and maintain high data quality throughout your data pipelines.
What makes Sifflet different from other data observability tools?
Sifflet stands out as a metadata control plane that connects technical reliability with business context. Unlike point solutions, it offers AI-native automation, full data lineage tracking, and cross-functional accessibility, making it ideal for organizations that need to scale trust in their data across teams.
What should I look for in a modern data discovery tool?
Look for features like self-service discovery, automated metadata collection, and end-to-end data lineage. Scalability is key too, especially as your data grows. Tools like Sifflet also integrate data observability, so you can monitor data quality and pipeline health while exploring your data assets.
Why are containers such a big deal in modern data infrastructure?
Containers have become essential in modern data infrastructure because they offer portability, faster deployments, and easier scalability. They simplify the way we manage distributed systems and are a key component in cloud data observability by enabling consistent environments across development, testing, and production.
What are some signs that our organization might need better data observability?
If your team struggles with delayed dashboards, inconsistent metrics, or unclear data lineage, it's likely time to invest in a data observability solution. At Sifflet, we even created a simple diagnostic to help you assess your data temperature. Whether you're in a 'slow burn' or a 'five alarm fire' state, we can help you improve data reliability and pipeline health.
What impact did Sifflet have on fostering a data-driven culture at Meero?
Sifflet’s intuitive UI and real-time data observability dashboards empowered even non-technical users at Meero to understand data health. This transparency helped build trust in data and promoted a stronger data-driven culture across the organization.



















-p-500.png)
