Cost-efficient data pipelines
Pinpoint cost inefficiencies and anomalies thanks to full-stack data observability.


Data asset optimization
- Leverage lineage and Data Catalog to pinpoint underutilized assets
- Get alerted on unexpected behaviors in data consumption patterns

Proactive data pipeline management
Proactively prevent pipelines from running in case a data quality anomaly is detected


Still have a question in mind ?
Contact Us
Frequently asked questions
What kind of monitoring capabilities does Sifflet offer out of the box?
Sifflet comes with a powerful library of pre-built monitors for data profiling, data freshness checks, metrics health, and more. These templates are easily customizable, supporting both batch data observability and streaming data monitoring, so you can tailor them to your specific data pipelines.
How does Sifflet help identify performance bottlenecks in dbt models?
Sifflet's dbt runs tab offers deep insights into model execution, cost, and runtime, making it easy to spot inefficiencies. You can also use historical performance data to set up custom dashboards and proactive monitors. This helps with capacity planning and ensures your data pipelines stay optimized and cost-effective.
How do JOIN strategies affect query execution and data observability?
JOINs can be very resource-intensive if not used correctly. Choosing the right JOIN type and placing conditions in the ON clause helps reduce unnecessary data processing, which is key for effective data observability and real-time metrics tracking.
Is Sifflet suitable for large, distributed data environments?
Absolutely! Sifflet was built with scalability in mind. Whether you're working with batch data observability or streaming data monitoring, our platform supports distributed systems observability and is designed to grow with multi-team, multi-region organizations.
What does Sifflet plan to do with the new $18M in funding?
We're excited to use this funding to accelerate product innovation, expand our North American presence, and grow our team. Our focus will be on enhancing AI-powered capabilities, improving data pipeline monitoring, and helping customers maintain data reliability at scale.
How does reverse ETL improve data reliability and reduce manual data requests?
Reverse ETL automates the syncing of data from your warehouse to business apps, helping reduce the number of manual data requests across teams. This improves data reliability by ensuring consistent, up-to-date information is available where it’s needed most, while also supporting SLA compliance and data automation efforts.
Who are some of the companies using Sifflet’s observability tools?
We're proud to work with amazing organizations like St-Gobain, Penguin Random House, and Euronext. These enterprises rely on Sifflet for cloud data observability, data lineage tracking, and proactive monitoring to ensure their data is always AI-ready and analytics-friendly.
What does it mean to treat data as a product?
Treating data as a product means prioritizing its reliability, usability, and trustworthiness—just like you would with any customer-facing product. This mindset shift is driving the need for observability platforms that support data governance, real-time metrics, and proactive monitoring across the entire data lifecycle.



















-p-500.png)
