Cost-efficient data pipelines

Pinpoint cost inefficiencies and anomalies thanks to full-stack data observability.

Data asset optimization

  • Leverage lineage and Data Catalog to pinpoint underutilized assets
  • Get alerted on unexpected behaviors in data consumption patterns

Proactive data pipeline management

Proactively prevent pipelines from running in case a data quality anomaly is detected

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

How can executive sponsorship help scale data governance efforts?
Executive sponsorship is essential for scaling data governance beyond grassroots efforts. As organizations mature, top-down support ensures proper budget allocation for observability tools, data pipeline monitoring, and team resources. When leaders are personally invested, it helps shift the mindset from reactive fixes to proactive data quality and governance practices.
What makes Sifflet stand out when it comes to data reliability and trust?
Sifflet shines in data reliability by offering real-time metrics and intelligent anomaly detection. During the webinar, we saw how even non-technical users can set up custom monitors, making it easy for teams to catch issues early and maintain SLA compliance with confidence.
How does Dailymotion foster a strong data culture beyond just using observability tools?
They’ve implemented a full enablement program with starter kits, trainings, and office hours to build data literacy and trust. Observability tools are just one part of the equation; the real focus is on enabling confident, autonomous decision-making across the organization.
How did Adaptavist reduce data downtime with Sifflet?
Adaptavist used Sifflet’s observability platform to map the blast radius of changes, alert users before issues occurred, and validate results pre-production. This proactive approach to data pipeline monitoring helped them eliminate downtime during a major refactor and shift from 'merge and pray' to a risk-aware, observability-first workflow.
What makes Etam’s data strategy resilient in a fast-changing retail landscape?
Etam’s data strategy is built on clear business alignment, strong data quality monitoring, and a focus on delivering ROI across short, mid, and long-term horizons. With the help of an observability platform, they can adapt quickly, maintain data reliability, and support strategic decision-making even in uncertain conditions.
How does the rise of unstructured data impact data quality monitoring?
Unstructured data, like text, images, and audio, is growing rapidly due to AI adoption and IoT expansion. This makes data quality monitoring more complex but also more essential. Tools that can profile and validate unstructured data are key to maintaining high-quality datasets for both traditional and AI-driven applications.
How does field-level lineage improve root cause analysis in observability platforms like Sifflet?
Field-level lineage allows users to trace issues down to individual columns across tables, making it easier to pinpoint where a problem originated. This level of detail enhances root cause analysis and impact assessment, helping teams resolve incidents quickly and maintain trust in their data.
What tools can help me monitor data consistency between old and new environments?
You can use data profiling and anomaly detection tools to compare datasets before and after migration. These features are often built into modern data observability platforms and help you validate that nothing critical was lost or changed during the move.