Monitoring at Scale

Coverage without compromise.

Grow monitoring coverage intelligently as your stack scales and do more with less resources thanks to tooling that reduces maintenance burden, improves signal-to-noise, and helps you understand impact across interconnected systems.

Don’t Let Scale Stop You

As your stack and data assets scale, so do monitors. Keeping rules updated becomes a full-time job, and tribal knowledge about monitors gets scattered, so teams struggle to sunset obsolete monitors while adding new ones. No more with Sifflet.

  • Optimize monitoring coverage and minimize noise levels with AI-powered suggestions and supervision that adapt dynamically
  • Implement programmatic monitoring set up and maintenance with Data Quality as Code (DQaC)
  • Automated monitor creation and updates based on data changes
  • Centralized monitor management reduces maintenance overhead

Get Clear and Consistent

Maintaining consistent monitoring practices across tools, platforms, and internal teams that work across different parts of the stack isn’t easy. Sifflet makes it a breeze.

  • Set up consistent alerting and response workflows
  • Benefit from unified monitoring across your platforms and tools
  • Use automated dependency mapping to show system relationships and benefit from end-to-end visibility across the entire data pipeline

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Frequently asked questions

Why is standardization important when scaling dbt, and how does Sifflet support it?
Standardization is key to maintaining control as your dbt project grows. Sifflet supports this by centralizing metadata and enabling compliance monitoring through features like data contracts enforcement and asset tagging. This ensures consistency, improves data governance, and reduces the risk of data drift or unmonitored critical assets.
What kind of data quality monitoring does Sifflet offer when used with dbt?
When paired with dbt, Sifflet provides robust data quality monitoring by combining dbt test insights with ML-based rules and UI-defined validations. This helps you close test coverage gaps and maintain high data quality throughout your data pipelines.
How does Sifflet support traceability across diverse data stacks?
Traceability is a key pillar of Sifflet’s observability platform. We’ve expanded support for tools like Synapse, MicroStrategy, and Fivetran, and introduced our Universal Connector to bring in any asset, even from AI models. This makes root cause analysis and data lineage tracking more comprehensive and actionable.
Why is data observability gaining momentum now, even though software observability has been around for a while?
Great question! Software observability took off in the 2010s with the rise of cloud-native apps, but data observability is catching up fast. As businesses start treating data as a mission-critical asset—especially with the growth of AI and cloud data platforms like Snowflake—the need for real-time visibility, data reliability, and governance has become urgent. We're in the early innings, but the pace is accelerating quickly.
Can data observability support better demand forecasting for retailers?
Absolutely. By integrating historical sales, real-time transactions, and external data sources like weather or social trends, data observability platforms enhance forecast accuracy. They use machine learning to evaluate and adjust predictions, helping retailers align inventory with actual consumer demand more effectively.
What’s coming next for the Sifflet AI Assistant?
We’re excited about what’s ahead. Soon, the Sifflet AI Assistant will allow non-technical users to create monitors using natural language, expand monitoring coverage automatically, and provide deeper insights into resource utilization and capacity planning to support scalable data observability.
What role does Sifflet play in Etam’s data governance efforts?
Sifflet supports Etam by embedding data governance into their workflows through automated monitoring, anomaly detection, and data lineage tracking. This gives the team better visibility into their data pipelines and helps them troubleshoot issues quickly without slowing down innovation.
How did Adaptavist reduce data downtime with Sifflet?
Adaptavist used Sifflet’s observability platform to map the blast radius of changes, alert users before issues occurred, and validate results pre-production. This proactive approach to data pipeline monitoring helped them eliminate downtime during a major refactor and shift from 'merge and pray' to a risk-aware, observability-first workflow.
Still have questions?