Monitoring at Scale
Coverage without compromise.
Grow monitoring coverage intelligently as your stack scales and do more with less resources thanks to tooling that reduces maintenance burden, improves signal-to-noise, and helps you understand impact across interconnected systems.

Don’t Let Scale Stop You
As your stack and data assets scale, so do monitors. Keeping rules updated becomes a full-time job, and tribal knowledge about monitors gets scattered, so teams struggle to sunset obsolete monitors while adding new ones. No more with Sifflet.
- Optimize monitoring coverage and minimize noise levels with AI-powered suggestions and supervision that adapt dynamically
- Implement programmatic monitoring set up and maintenance with Data Quality as Code (DQaC)
- Automated monitor creation and updates based on data changes
- Centralized monitor management reduces maintenance overhead

Get Clear and Consistent
Maintaining consistent monitoring practices across tools, platforms, and internal teams that work across different parts of the stack isn’t easy. Sifflet makes it a breeze.
- Set up consistent alerting and response workflows
- Benefit from unified monitoring across your platforms and tools
- Use automated dependency mapping to show system relationships and benefit from end-to-end visibility across the entire data pipeline


Frequently asked questions
Why is standardization important when scaling dbt, and how does Sifflet support it?
Standardization is key to maintaining control as your dbt project grows. Sifflet supports this by centralizing metadata and enabling compliance monitoring through features like data contracts enforcement and asset tagging. This ensures consistency, improves data governance, and reduces the risk of data drift or unmonitored critical assets.
What kind of data quality monitoring does Sifflet offer when used with dbt?
When paired with dbt, Sifflet provides robust data quality monitoring by combining dbt test insights with ML-based rules and UI-defined validations. This helps you close test coverage gaps and maintain high data quality throughout your data pipelines.
How does Sifflet support traceability across diverse data stacks?
Traceability is a key pillar of Sifflet’s observability platform. We’ve expanded support for tools like Synapse, MicroStrategy, and Fivetran, and introduced our Universal Connector to bring in any asset, even from AI models. This makes root cause analysis and data lineage tracking more comprehensive and actionable.
Why is data observability gaining momentum now, even though software observability has been around for a while?
Great question! Software observability took off in the 2010s with the rise of cloud-native apps, but data observability is catching up fast. As businesses start treating data as a mission-critical asset—especially with the growth of AI and cloud data platforms like Snowflake—the need for real-time visibility, data reliability, and governance has become urgent. We're in the early innings, but the pace is accelerating quickly.
Can data observability support better demand forecasting for retailers?
Absolutely. By integrating historical sales, real-time transactions, and external data sources like weather or social trends, data observability platforms enhance forecast accuracy. They use machine learning to evaluate and adjust predictions, helping retailers align inventory with actual consumer demand more effectively.
What’s coming next for the Sifflet AI Assistant?
We’re excited about what’s ahead. Soon, the Sifflet AI Assistant will allow non-technical users to create monitors using natural language, expand monitoring coverage automatically, and provide deeper insights into resource utilization and capacity planning to support scalable data observability.
What role does Sifflet play in Etam’s data governance efforts?
Sifflet supports Etam by embedding data governance into their workflows through automated monitoring, anomaly detection, and data lineage tracking. This gives the team better visibility into their data pipelines and helps them troubleshoot issues quickly without slowing down innovation.
How did Adaptavist reduce data downtime with Sifflet?
Adaptavist used Sifflet’s observability platform to map the blast radius of changes, alert users before issues occurred, and validate results pre-production. This proactive approach to data pipeline monitoring helped them eliminate downtime during a major refactor and shift from 'merge and pray' to a risk-aware, observability-first workflow.