Coverage without compromise.
Grow monitoring coverage intelligently as your stack scales and do more with less resources thanks to tooling that reduces maintenance burden, improves signal-to-noise, and helps you understand impact across interconnected systems.


Don’t Let Scale Stop You
As your stack and data assets scale, so do monitors. Keeping rules updated becomes a full-time job, and tribal knowledge about monitors gets scattered, so teams struggle to sunset obsolete monitors while adding new ones. No more with Sifflet.
- Optimize monitoring coverage and minimize noise levels with AI-powered suggestions and supervision that adapt dynamically
- Implement programmatic monitoring set up and maintenance with Data Quality as Code (DQaC)
- Automated monitor creation and updates based on data changes
- Centralized monitor management reduces maintenance overhead

Get Clear and Consistent
Maintaining consistent monitoring practices across tools, platforms, and internal teams that work across different parts of the stack isn’t easy. Sifflet makes it a breeze.
- Set up consistent alerting and response workflows
- Benefit from unified monitoring across your platforms and tools
- Use automated dependency mapping to show system relationships and benefit from end-to-end visibility across the entire data pipeline


Still have a question in mind ?
Contact Us
Frequently asked questions
How does Sifflet help reduce alert fatigue in data teams?
Great question! Sifflet tackles alert fatigue by using AI-native monitoring that understands business context. Instead of flooding teams with false positives, it prioritizes alerts based on downstream impact. This means your team focuses on real issues, improving trust in your observability tools and saving valuable engineering time.
What does Sifflet's recent $12.8M Series A funding mean for the future of data observability?
Great question! This funding round, led by EQT Ventures, allows us to double down on our mission to make data more reliable and trustworthy. With this investment, we're expanding our data observability platform, enhancing real-time monitoring capabilities, and growing our presence in EMEA and the US.
How does the checklist help with reducing alert fatigue?
The checklist emphasizes the need for smart alerting, like dynamic thresholding and alert correlation, instead of just flooding your team with notifications. This focus helps reduce alert fatigue and ensures your team only gets notified when it really matters.
Why is the traditional approach to data observability no longer enough?
Great question! The old playbook for data observability focused heavily on technical infrastructure and treated data like servers — if the pipeline ran and the schema looked fine, the data was assumed to be trustworthy. But today, data is a strategic asset that powers business decisions, AI models, and customer experiences. At Sifflet, we believe modern observability platforms must go beyond uptime and freshness checks to provide context-aware insights that reflect real business impact.
Who should be responsible for managing data quality in an organization?
Data quality management works best when it's a shared responsibility. Data stewards often lead the charge by bridging business needs with technical implementation. Governance teams define standards and policies, engineering teams build the monitoring infrastructure, and business users provide critical domain expertise. This cross-functional collaboration ensures that quality issues are caught early and resolved in ways that truly support business outcomes.
Why is technology critical to scaling data governance across teams?
Technology automates key governance tasks such as data classification, access control, and telemetry instrumentation. With the right tools, like a data observability platform, organizations can enforce policies at scale, detect anomalies automatically, and integrate governance into daily workflows. This reduces manual effort and ensures governance grows with the business.
How can inefficient SQL queries impact my data pipeline performance?
Great question! Inefficient SQL queries can lead to slow dashboards, increased ingestion latency, and even failed workloads. By optimizing your queries using best practices like proper filtering and avoiding SELECT *, you help improve data pipeline monitoring and maintain overall data reliability.
What does 'agentic observability' mean and why does it matter?
Agentic observability is our vision for the future — where observability platforms don’t just monitor, they act. Think of it as moving from real-time alerts to intelligent copilots. With features like auto-remediation, dynamic thresholding, and incident response automation, Sifflet is building systems that can detect issues, assess impact, and even resolve known problems on their own. It’s a huge step toward self-healing pipelines and truly proactive data operations.



















-p-500.png)
