Coverage without compromise.

Grow monitoring coverage intelligently as your stack scales and do more with less resources thanks to tooling that reduces maintenance burden, improves signal-to-noise, and helps you understand impact across interconnected systems.

Don’t Let Scale Stop You

As your stack and data assets scale, so do monitors. Keeping rules updated becomes a full-time job, and tribal knowledge about monitors gets scattered, so teams struggle to sunset obsolete monitors while adding new ones. No more with Sifflet.

  • Optimize monitoring coverage and minimize noise levels with AI-powered suggestions and supervision that adapt dynamically
  • Implement programmatic monitoring set up and maintenance with Data Quality as Code (DQaC)
  • Automated monitor creation and updates based on data changes
  • Centralized monitor management reduces maintenance overhead

Get Clear and Consistent

Maintaining consistent monitoring practices across tools, platforms, and internal teams that work across different parts of the stack isn’t easy. Sifflet makes it a breeze.

  • Set up consistent alerting and response workflows
  • Benefit from unified monitoring across your platforms and tools
  • Use automated dependency mapping to show system relationships and benefit from end-to-end visibility across the entire data pipeline

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Discover more title goes here

Still have a question in mind ?
Contact Us

Frequently asked questions

What does Full Data Stack Observability mean?
Full Data Stack Observability means having complete visibility into every layer of your data pipeline, from ingestion to business intelligence tools. At Sifflet, our observability platform collects signals across your entire stack, enabling anomaly detection, data lineage tracking, and real-time metrics collection. This approach helps teams ensure data reliability and reduce time spent firefighting issues.
What are the main differences between ETL and ELT for data integration?
ETL (Extract, Transform, Load) transforms data before storing it, while ELT (Extract, Load, Transform) loads raw data first, then transforms it. With modern cloud storage, ELT is often preferred for its flexibility and scalability. Whichever method you choose, pairing it with strong data pipeline monitoring ensures smooth operations.
How does Sifflet help Adaptavist detect issues before they impact stakeholders?
Sifflet enables real-time metrics and data freshness checks that surface anomalies before they escalate. With features like alerting, lineage tracking, and pre-prod validation, teams at Adaptavist can spot and fix problems early, reducing surprise outages and improving SLA compliance.
How does Sifflet make data observability more accessible to BI users?
Great question! At Sifflet, we're committed to making data observability insights available right where you work. That’s why we’ve expanded beyond our Chrome extension to integrate directly with popular Data Catalogs like Atlan, Alation, Castor, and Data Galaxy. This means BI users can access real-time metrics and data quality insights without ever leaving their workflow.
Will there be live demonstrations of Sifflet’s observability platform?
Absolutely! Our team will be offering hands-on demos that showcase how our observability tools integrate into your workflows. From real-time metrics to data quality monitoring, you’ll get a full picture of how Sifflet boosts data reliability across your stack.
How does Sifflet help with real-time anomaly detection?
Sifflet uses ML-based monitors and an AI-driven assistant to detect anomalies in real time. Whether it's data drift detection, schema changes, or unexpected drops in metrics, our platform ensures you catch issues early and resolve them fast with built-in root cause analysis and incident reporting.
Can SQL Table Tracer be used to improve incident response and debugging?
Absolutely! By clearly mapping upstream and downstream table relationships, SQL Table Tracer helps teams quickly trace issues back to their source. This accelerates root cause analysis and supports faster, more effective incident response workflows in any observability platform.
Why did Adaptavist choose Sifflet over other observability tools?
Callum and his team were impressed by how quickly Sifflet’s cross-repo data lineage tracking gave them visibility into their pipelines. Within days, they had a working proof of concept and were debugging in minutes instead of days. The unified view across their stack made Sifflet the right fit for scaling data observability across teams.