Sifflet icon

At Sifflet,
Data Means Business.

Data drives every strategic decision, guides innovation, and powers transformation. But how do companies ensure their data is reliable? How can they trust the insights that guide critical business choices? How do they turn raw information into actionable intelligence, high-performing products, and superior strategies? Enter Sifflet.

sifflet team at a convention
sifflet team at a convention

Who We Are

We are a data observability platform. 
We offer end-to-end oversight into the entire data stack, helping teams to uncover, prevent and overcome the technical and organizational obstacles that get in the way of better quality, more reliable data.

Our Mission

We help companies see data breakthroughs. Sifflet delivers smoother running data stacks by providing detailed oversight and solutions that reduce data breaks, improve team alignment and operations, and build confidence in the numbers. The result? Superior insights, value and products from data.

Sifflet team

Meet our Executive team

Sifflet was built by a data-obsessed team for
data-obsessed teams.

Chief Executive Officer
Salma Bakouk
Before founding Sifflet, Salma worked in quantitative sales & trading at Goldman Sachs, where she saw firsthand how unreliable data could undermine even the most sophisticated models. She holds two master’s degrees in Applied Mathematics and Computer Science from École Centrale Paris. Named among Europe’s Top 100 Women in Tech, Salma is a frequent speaker at leading industry events including Gartner D&A Summit and Big Data LDN. Outside of work, she loves running mountain trails, discovering new cities, and spending time with her dog always chasing the same clarity and balance she strives to bring to data.

Join Our Team

Sifflet team
sifflet's dog
sifflet at a convention
meeting of Sifflet team
Sifflet team
sifflet team at a convention
Sifflet team team work
Sifflet team

Frequently asked questions

What role does data lineage tracking play in managing complex dbt pipelines?
Data lineage tracking is essential when your dbt projects grow in size and complexity. Sifflet provides a unified, metadata-rich lineage graph that spans your entire data stack, helping you quickly perform root cause analysis and impact assessments. This visibility is crucial for maintaining trust and transparency in your data pipelines.
Why should I care about metadata management in my organization?
Great question! Metadata management helps you understand what data you have, where it comes from, and how it’s being used. It’s a critical part of data governance and plays a huge role in improving data discovery, trust, and overall data reliability. With the right metadata strategy, your team can find the right data faster and make better decisions.
Is this integration useful for teams focused on data governance and compliance?
Yes, it really is! With enhanced lineage and metadata tracking from source to destination, the Fivetran integration supports better data governance. It helps ensure transparency, traceability, and SLA compliance across your data ecosystem.
What challenges did Hypebeast face when transitioning to full-scale data observability?
One major challenge was shifting the company culture from being data-aware to truly data-driven. Technically, integrating new observability tools into existing infrastructures and managing the initial investment in time and resources also posed hurdles.
What’s the difference between static and dynamic freshness monitoring modes?
Great question! In static mode, Sifflet checks whether data has arrived during a specific time slot and alerts you if it hasn’t. In dynamic mode, our system learns your data arrival patterns over time and only sends alerts when something truly unexpected happens. This helps reduce alert fatigue while maintaining high standards for data quality monitoring.
What trends are driving the demand for centralized data observability platforms?
The growing complexity of data products, especially with AI and real-time use cases, is driving the need for centralized data observability platforms. These platforms support proactive monitoring, root cause analysis, and incident response automation, making it easier for teams to maintain data reliability and optimize resource utilization.
How do classification tags support real-time metrics and alerting?
Classification tags help define the structure and importance of your data, which in turn makes it easier to configure real-time metrics and alerts. For example, tagging a 'country' field as low cardinality allows teams to monitor sales data by region, enabling faster anomaly detection and more actionable real-time alerts.
How does Sifflet make it easier to manage data volume at scale?
Sifflet simplifies data volume monitoring with plug-and-play integrations, AI-powered baselining, and unified observability dashboards. It automatically detects anomalies, connects them to business impact, and provides real-time alerts. Whether you're using Snowflake, BigQuery, or Kafka, Sifflet helps you stay ahead of data reliability issues with proactive monitoring and alerting.
Still have questions?

Want to join the team?

We're seeking driven individuals eager to roll up their sleeves and help make data observability everyone's business.