Redshift
Integrate Sifflet with Redshift to access end-to-end lineage, monitor assets like Spectrum tables, enrich metadata, and gain insights for optimized data observability.




Exhaustive metadata
Sifflet leverages Redshift's internal metadata tables to retrieve information about your assets and enhance it with Sifflet-generated insights.


End-to-end lineage
Have a complete understanding of how data flows through your platform via end-to-end lineage for Redshift.
Redshift Spectrum support
Sifflet can monitor external tables via Redshift Spectrum, allowing you to ensure the quality of data stored in other systems like S3.


Still have a question in mind ?
Contact Us
Frequently asked questions
How does Sifflet support both technical and business teams?
Sifflet is designed to bridge the gap between data engineers and business users. It combines powerful features like automated anomaly detection, data lineage, and context-rich alerting with a no-code interface that’s accessible to non-technical teams. This means everyone—from analysts to execs—can get real-time metrics and insights about data reliability without needing to dig through logs or write SQL. It’s observability that works across the org, not just for the data team.
How does data observability support AI and machine learning initiatives?
AI models are only as good as the data they’re trained on. With data observability, you can ensure data quality, detect data drift, and enforce validation rules, all of which are critical for reliable AI outcomes. Sifflet helps you maintain trust in your data so you can confidently scale your ML and predictive analytics efforts.
Can data observability support better demand forecasting for retailers?
Absolutely. By integrating historical sales, real-time transactions, and external data sources like weather or social trends, data observability platforms enhance forecast accuracy. They use machine learning to evaluate and adjust predictions, helping retailers align inventory with actual consumer demand more effectively.
What are Sentinel, Sage, and Forge, and how do they enhance data observability?
Sentinel, Sage, and Forge are Sifflet’s new AI agents designed to supercharge your data observability efforts. Sentinel proactively recommends monitoring strategies, Sage accelerates root cause analysis by remembering system history, and Forge guides your team with actionable fixes. Together, they help teams reduce alert fatigue and improve data reliability at scale.
How does data observability differ from traditional data quality monitoring?
Great question! Traditional data quality monitoring focuses on pre-defined rules and tests, but it often falls short when unexpected issues arise. Data observability, on the other hand, provides end-to-end visibility using telemetry instrumentation like metrics, metadata, and lineage. This makes it possible to detect anomalies in real time and troubleshoot issues faster, even in complex data environments.
How does the checklist help with reducing alert fatigue?
The checklist emphasizes the need for smart alerting, like dynamic thresholding and alert correlation, instead of just flooding your team with notifications. This focus helps reduce alert fatigue and ensures your team only gets notified when it really matters.
How does Sifflet help reduce alert fatigue in data teams?
Sifflet's observability tools are built with smart alerting in mind. By combining dynamic thresholding, impact-aware triage, and anomaly scoring, we help teams focus on what really matters. This reduces noise and ensures that alerts are actionable, leading to faster resolution and better SLA compliance.
How does data observability complement a data catalog?
While a data catalog helps you find and understand your data, data observability ensures that the data you find is actually reliable. Observability tools like Sifflet monitor the health of your data pipelines in real time, using features like data freshness checks, anomaly detection, and data quality monitoring. Together, they give you both visibility and trust in your data.












-p-500.png)
