Data Engineer

You’ll be the boss. Sifflet gives you the capabilities and oversight to manage your data stack like never before, faster than you ever thought possible.

Troubleshoot and Debug

Sifflet makes troubleshooting and debugging faster, more efficient and more effective thanks to pipeline failure or data anomaly alerts and rich contextual information.

Pipeline Performance Optimization

Pipelines power your data stack. Sifflet helps you monitor pipeline performance and get insight into bottlenecks and inefficient transformations.

Quality Assurance

Uplevel your data quality thanks to automated quality checks and validations and custom rules to ensure data integrity.

More Productive. More Powerful.

Sifflet augments your productivity by giving you end-to-end visibility into your architecture, assets, and pipelines. AI-powered monitoring sends you the right alerts, at the right time, so you can triage efficiently and effectively. And advanced lineage capabilities enable you to get to resolution faster.

Built for Business.

Sifflet helps you collaborate better with users on the business end. Give your data consumers self-serve tools, such as smart monitoring setup that leverages large language models and embed monitoring alerts into their data products.

See Value From Day One.

Sifflet connects to hundreds of tools already in your stack and offers out of the box monitors and tooling so you can start seeing value from day one.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

Why should data alerts live in ServiceNow?
If your team already uses ServiceNow for incident management, having your data alerts show up there means fewer missed issues and faster resolution times. It brings transparency to your data pipelines and supports better data governance and trust.
How do I ensure SLA compliance during a cloud migration?
Ensuring SLA compliance means keeping a close eye on metrics like throughput, resource utilization, and error rates. A robust observability platform can help you track these metrics in real time, so you stay within your service level objectives and keep stakeholders confident.
How did jobvalley improve data visibility across their teams?
jobvalley enhanced data visibility by implementing Sifflet’s observability platform, which included a powerful data catalog. This centralized hub made it easier for teams to discover and access the data they needed, fostering better collaboration and transparency across departments.
Why is this integration important for data pipeline monitoring?
Bringing Sifflet’s observability tools into Apache Airflow allows for proactive data pipeline monitoring. You get real-time metrics, anomaly detection, and data freshness checks that help you catch issues early and keep your pipelines healthy.
How does a data observability platform help improve inventory accuracy?
A data observability platform continuously monitors inventory data using real-time metrics and anomaly detection. It compares RFID scans with POS transactions, flags inconsistencies, and tracks key inventory KPIs. This helps retailers maintain more accurate stock levels and reduce shrinkage or overstocking.
What’s the first step when building a modern data team from scratch?
The very first step is to set clear objectives that align with your company’s level of data maturity and business needs. This means involving stakeholders from different departments and deciding whether your focus is on exploratory analysis, business intelligence, or innovation through AI and ML. These goals will guide your choices in data stack, platform, and hiring.
How is Etam using data observability to support its 2025 strategy?
Etam is leveraging data observability as a foundational element of its 2025 data strategy. With Sifflet’s observability platform, the team can monitor data quality, detect issues early, and ensure data reliability, which helps them move faster and with more confidence across the business.
What makes debugging data pipelines so time-consuming, and how can observability help?
Debugging complex pipelines without the right tools can feel like finding a needle in a haystack. A data observability platform simplifies root cause analysis by providing detailed telemetry and pipeline health dashboards, so you can quickly identify where things went wrong and fix them faster.