Technical Teams

Data Engineer

You’ll be the boss. Sifflet gives you the capabilities and oversight to manage your data stack like never before, faster than you ever thought possible.

Troubleshoot and Debug

Sifflet makes troubleshooting and debugging faster, more efficient and more effective thanks to pipeline failure or data anomaly alerts and rich contextual information.

Pipeline Performance Optimization

Pipelines power your data stack. Sifflet helps you monitor pipeline performance and get insight into bottlenecks and inefficient transformations.

Quality Assurance

Uplevel your data quality thanks to automated quality checks and validations and custom rules to ensure data integrity.

More Productive. More Powerful.

Sifflet augments your productivity by giving you end-to-end visibility into your architecture, assets, and pipelines. AI-powered monitoring sends you the right alerts, at the right time, so you can triage efficiently and effectively. And advanced lineage capabilities enable you to get to resolution faster.

Built for Business.

Sifflet helps you collaborate better with users on the business end. Give your data consumers self-serve tools, such as smart monitoring setup that leverages large language models and embed monitoring alerts into their data products.

See Value From Day One.

Sifflet connects to hundreds of tools already in your stack and offers out of the box monitors and tooling so you can start seeing value from day one.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

Which industries or use cases benefit most from Sifflet's observability tools?
Our observability tools are designed to support a wide range of industries, from retail and finance to tech and logistics. Whether you're monitoring streaming data in real time or ensuring data freshness in batch pipelines, Sifflet helps teams maintain high data quality and meet SLA compliance goals.
Why did Adaptavist choose Sifflet over other observability tools?
Callum and his team were impressed by how quickly Sifflet’s cross-repo data lineage tracking gave them visibility into their pipelines. Within days, they had a working proof of concept and were debugging in minutes instead of days. The unified view across their stack made Sifflet the right fit for scaling data observability across teams.
What should I look for in terms of integrations when choosing a data observability platform?
Great question! When evaluating a data observability platform, it's important to check how well it integrates with your existing data stack. The more integrations it supports, the more visibility you’ll have across your pipelines. This is key to achieving comprehensive data pipeline monitoring and ensuring smooth observability across your entire data ecosystem.
How does Sifflet support data quality monitoring?
Sifflet makes data quality monitoring seamless with its auto-coverage feature. It automatically suggests fields to monitor and applies rules for freshness, uniqueness, and null values. This proactive monitoring helps maintain SLA compliance and keeps your data assets trustworthy and safe to use.
How does Sifflet enhance data governance for my organization?
Sifflet supports data governance by allowing you to classify assets with tags and labels, define business terms in a shared glossary, and track data lineage. These features help ensure consistent definitions and safe handling of sensitive data across your stack.
What makes Sifflet’s approach to anomaly detection more reliable than traditional methods?
Sifflet uses intelligent, ML-driven anomaly detection that evolves with your data. Instead of relying on static rules, it adjusts sensitivity and parameters in real time, improving data reliability and helping teams focus on real issues without being overwhelmed by alert fatigue.
Can I monitor my BigQuery data with Sifflet?
Absolutely! Sifflet’s observability tools are fully compatible with Google BigQuery, so you can perform data quality monitoring, data lineage tracking, and anomaly detection right where your data lives.
Why does AI often fail even when the models are technically sound?
Great question! AI doesn't usually fail because of bad models, but because of unreliable data. Without strong data observability in place, it's hard to detect data issues like schema changes, stale tables, or broken pipelines. These problems undermine trust, and without trust in your data, even the best models can't deliver value.
Still have questions?