Home
Pricing
%%Flexible pricing for %%every stage of data maturity
Build data trust at your own pace, from first monitors to enterprise-wide observability.
Got Snowflake credits sitting around? You can use them here.
Let’s chat about how it works.
Entry
Growth
Enterprise
Number of Assets Monitored
Up to 500
Up to 1,000
1,000+ (scales flexibly)
Great for...
Small but mighty data teams
Cross-functional data teams
Large, regulated or complex organizations
Procurement Process
Self-Serve/Marketplaces
Sales-Assisted/Marketplaces
Direct Enterprise Sales or Channel
What you'll get
Core Data Observability & Catalog
(Fundamental metrics: freshness, schema, volume, custom metrics...)
Business-Aware Lineage & Impact Analysis
Automated Root-Cause Analysis
AI-Powered Incident Management
Advanced Governance
(RBAC, Audit logs...)
Data Observability Agent
SSO
Snowflake/BigQuery/S3 Data Sharing
Early Access to Upcoming Data Observability Agents
Pipeline Monitoring
Deployment
Deployment Type
SaaS
SaaS
SaaS/Hybrid/Self-hosted
SLA & Support
Standard
Priority
Enterprise (24/7, white-glove)
Onboarding & Success Program
Guided
Dedicated
Enterprise (including executive sponsorship)












What Our Customers Say
See Sifflet in action!
Curious about how Sifflet can transform the way your team works with data?
Join our 30-min biweekly demo to see how data leaders, engineers, and platform teams use Sifflet to detect, resolve, and prevent issues—before they impact the business.

Looking for more?

Customer Story
Automating Data Quality at Scale: Inside Penguin Random House’s Sifflet Implementation

Blogpost
Data Observability, Five Years In: Why the Old Playbook Doesn’t Work Anymore
.avif)
Checklist
Access this (really) free checklist that helps you pick a data observability platform that pays off in speed, trust & measurable impact.

Let's make it a thing
One form, one message, one step closer to data you can actually trust.
Get in touch
Still have a question in mind ?
Contact Us
Frequently asked questions
What makes Carrefour’s approach to observability scalable and effective?
Carrefour’s approach combines no-code self-service tools with as-code automation, making it easy for both technical and non-technical users to adopt. This balance, along with incremental implementation and cultural emphasis on data quality, supports scalable observability across the organization.
What are the main challenges of implementing Data as a Product?
Some key challenges include ensuring data privacy and security, maintaining strong data governance, and investing in data optimization. These areas require robust monitoring and compliance tools. Leveraging an observability platform can help address these issues by providing visibility into data lineage, quality, and pipeline performance.
What is reverse ETL and why is it important in the modern data stack?
Reverse ETL is the process of moving data from your data warehouse into external systems like CRMs or marketing platforms. It plays a crucial role in the modern data stack by enabling operational analytics, allowing business teams to act on real-time metrics and make data-driven decisions directly within their everyday tools.
What challenges did Hypebeast face when transitioning to full-scale data observability?
One major challenge was shifting the company culture from being data-aware to truly data-driven. Technically, integrating new observability tools into existing infrastructures and managing the initial investment in time and resources also posed hurdles.
How can integration and connectivity improve data pipeline monitoring?
When a data catalog integrates seamlessly with your databases, cloud storage, and data lakes, it enhances your ability to monitor data pipelines in real time. This connectivity supports better ingestion latency tracking and helps maintain a reliable observability platform.
How can data teams prioritize what to monitor in complex environments?
Not all data is created equal, so it's important to focus data quality monitoring efforts on the assets that drive business outcomes. That means identifying key dashboards, critical metrics, and high-impact models, then using tools like pipeline health dashboards and SLA monitoring to keep them reliable and fresh.
Can Sifflet help with root cause analysis when data issues arise?
Absolutely! Sifflet’s field-level data lineage tracking lets you trace data issues from BI dashboards all the way back to source systems. Its AI agent, Sage, even recalls past incidents to suggest likely causes, making root cause analysis faster and more accurate for data engineers and analysts alike.
What makes Sifflet different from other data observability platforms like Monte Carlo or Anomalo?
Sifflet stands out by offering a unified observability platform that combines data cataloging, monitoring, and data lineage tracking in one place. Unlike tools that focus only on anomaly detection or technical metrics, Sifflet brings in business context, empowering both technical and non-technical users to collaborate and ensure data reliability at scale.
-p-500.png)
