Home
Pricing
%%Flexible pricing for %%every stage of data maturity
Build data trust at your own pace, from first monitors to enterprise-wide observability.
Got Snowflake credits sitting around? You can use them here.
Let’s chat about how it works.
Entry
Growth
Enterprise
Number of Assets Monitored
Up to 500
Up to 1,000
1,000+ (scales flexibly)
Great for...
Small but mighty data teams
Cross-functional data teams
Large, regulated or complex organizations
Procurement Process
Self-Serve/Marketplaces
Sales-Assisted/Marketplaces
Direct Enterprise Sales or Channel
What you'll get
Core Data Observability & Catalog
(Fundamental metrics: freshness, schema, volume, custom metrics...)
Business-Aware Lineage & Impact Analysis
Automated Root-Cause Analysis
AI-Powered Incident Management
Advanced Governance
(RBAC, Audit logs...)
Data Observability Agent
SSO
Snowflake/BigQuery/S3 Data Sharing
Early Access to Upcoming Data Observability Agents
Pipeline Monitoring
Deployment
Deployment Type
SaaS
SaaS
SaaS/Hybrid/Self-hosted
SLA & Support
Standard
Priority
Enterprise (24/7, white-glove)
Onboarding & Success Program
Guided
Dedicated
Enterprise (including executive sponsorship)












What Our Customers Say
See Sifflet in action!
Curious about how Sifflet can transform the way your team works with data?
Join our 30-min biweekly demo to see how data leaders, engineers, and platform teams use Sifflet to detect, resolve, and prevent issues—before they impact the business.

Looking for more?

Customer Story
Automating Data Quality at Scale: Inside Penguin Random House’s Sifflet Implementation

Blogpost
Data Observability, Five Years In: Why the Old Playbook Doesn’t Work Anymore
.avif)
Checklist
Access this (really) free checklist that helps you pick a data observability platform that pays off in speed, trust & measurable impact.

Let's make it a thing
One form, one message, one step closer to data you can actually trust.
Get in touch
Still have a question in mind ?
Contact Us
Frequently asked questions
How does Sifflet help detect and prevent data drift in AI models?
Sifflet is designed to monitor subtle changes in data distributions, which is key for data drift detection. This helps teams catch shifts in data that could negatively impact AI model performance. By continuously analyzing incoming data and comparing it to historical patterns, Sifflet ensures your models stay aligned with the most relevant and reliable inputs.
Can the Sifflet AI Assistant help non-technical users with data quality monitoring?
Absolutely! One of our goals is to democratize data observability. The Sifflet AI Assistant is designed to be accessible to both technical and non-technical users, offering natural language interfaces and actionable insights that simplify data quality monitoring across the organization.
How does Sifflet help optimize Data as a Product initiatives?
Sifflet enhances DaaP initiatives by providing comprehensive data observability dashboards, real-time metrics, and anomaly detection. It streamlines data pipeline monitoring and supports proactive data quality checks, helping teams ensure their data products are accurate, well-governed, and ready for use or monetization.
How did Dailymotion use data observability to support their shift to a product-oriented data platform?
Dailymotion embedded data observability into their data ecosystem to ensure trust, reliability, and discoverability across teams. This shift allowed them to move from ad hoc data requests to delivering scalable, analytics-driven data products that empower both engineers and business users.
Who should be responsible for managing data quality in an organization?
Data quality management works best when it's a shared responsibility. Data stewards often lead the charge by bridging business needs with technical implementation. Governance teams define standards and policies, engineering teams build the monitoring infrastructure, and business users provide critical domain expertise. This cross-functional collaboration ensures that quality issues are caught early and resolved in ways that truly support business outcomes.
Why is data quality management so important for growing organizations?
Great question! Data quality management helps ensure that your data remains accurate, complete, and aligned with business goals as your organization scales. Without strong data quality practices, teams waste time troubleshooting issues, decision-makers lose trust in reports, and systems make poor choices. With proper data quality monitoring in place, you can move faster, automate confidently, and build a competitive edge.
How does Sifflet’s Freshness Monitor scale across large data environments?
Sifflet’s Freshness Monitor is designed to scale effortlessly. Thanks to our dynamic monitoring mode and continuous scan feature, you can monitor thousands of data assets without manually setting schedules. It’s a smart way to implement data pipeline monitoring across distributed systems and ensure SLA compliance at scale.
What types of metadata are captured in a modern data catalog?
Modern data catalogs capture four key types of metadata: technical (schemas, formats), business (definitions, KPIs), operational (usage patterns, SLA compliance), and governance (access controls, data classifications). These layers work together to support data quality monitoring and transparency in data pipelines.
-p-500.png)
