BigQuery
Sifflet icon

Google BigQuery

Integrate Sifflet with BigQuery to monitor all table types, access field-level lineage, enrich metadata, and gain actionable insights for an optimized data observability strategy.

Metadata-based monitors and optimized queries

Sifflet leverages BigQuery's metadata APIs and relies on optimized queries, ensuring minimal costs and efficient monitor runs.

Usage and BigQuery metadata

Get detailed statistics about the usage of your BigQuery assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from BigQuery.

Field-level lineage

Have a complete understanding of how data flows through your platform via field-level end-to-end lineage for BigQuery.

External table support

Sifflet can monitor external BigQuery tables to ensure the quality of data in other systems like Google Cloud BigTable and Google Cloud Storage

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What should I consider when choosing a data observability tool?
When selecting a data observability tool, consider your data stack, team size, and specific needs like anomaly detection, metrics collection, or schema registry integration. Whether you're looking for open source observability options or a full-featured commercial platform, make sure it supports your ecosystem and scales with your data operations.
What kind of monitoring capabilities does Sifflet offer out of the box?
Sifflet comes with a powerful library of pre-built monitors for data profiling, data freshness checks, metrics health, and more. These templates are easily customizable, supporting both batch data observability and streaming data monitoring, so you can tailor them to your specific data pipelines.
Why is technology critical to scaling data governance across teams?
Technology automates key governance tasks such as data classification, access control, and telemetry instrumentation. With the right tools, like a data observability platform, organizations can enforce policies at scale, detect anomalies automatically, and integrate governance into daily workflows. This reduces manual effort and ensures governance grows with the business.
What makes traditional data monitoring insufficient for modern retail operations?
Traditional monitoring often relies on batch processing, leading to delays in inventory updates. It also struggles with data silos, lacks robust data quality monitoring, and is mostly reactive. In contrast, modern observability tools provide real-time insights, dynamic thresholding, and predictive analytics monitoring to keep up with fast-paced retail environments.
What role does data lineage tracking play in observability?
Data lineage tracking is a key part of any robust data observability framework. It helps you understand where your data comes from, how it’s transformed, and where it flows. This visibility is essential for debugging issues, ensuring compliance, and building trust in your data pipelines. It's especially useful when paired with real-time data pipeline monitoring tools.
What is data volume and why is it so important to monitor?
Data volume refers to the quantity of data flowing through your pipelines. Monitoring it is critical because sudden drops, spikes, or duplicates can quietly break downstream logic and lead to incomplete analysis or compliance risks. With proper data volume monitoring in place, you can catch these anomalies early and ensure data reliability across your organization.
Why is data lineage a pillar of Full Data Stack Observability?
At Sifflet, we consider data lineage a core part of Full Data Stack Observability because it connects data quality monitoring with data discovery. By mapping data dependencies, teams can detect anomalies faster, perform accurate root cause analysis, and maintain trust in their data pipelines.
How does Sifflet help improve data reliability for modern organizations?
At Sifflet, we provide a full-stack observability platform that gives teams complete visibility into their data pipelines. From data quality monitoring to root cause analysis and real-time anomaly detection, we help organizations ensure their data is accurate, timely, and trustworthy.

Want to try Sifflet on your BigQuery Stack?

Get in Touch Now!

I want to Try