BigQuery
Sifflet icon

Google BigQuery

Integrate Sifflet with BigQuery to monitor all table types, access field-level lineage, enrich metadata, and gain actionable insights for an optimized data observability strategy.

Metadata-based monitors and optimized queries

Sifflet leverages BigQuery's metadata APIs and relies on optimized queries, ensuring minimal costs and efficient monitor runs.

Usage and BigQuery metadata

Get detailed statistics about the usage of your BigQuery assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from BigQuery.

Field-level lineage

Have a complete understanding of how data flows through your platform via field-level end-to-end lineage for BigQuery.

External table support

Sifflet can monitor external BigQuery tables to ensure the quality of data in other systems like Google Cloud BigTable and Google Cloud Storage

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

Why is data lineage important for GDPR compliance?
Data lineage is essential for GDPR because it helps you trace personal data from source to destination. This means you can see where PII is stored, how it flows through your data pipelines, and which reports or applications use it. With this visibility, you can manage deletion requests, audit data usage, and ensure data governance policies are enforced consistently.
How do modern storage platforms like Snowflake and S3 support observability tools?
Modern platforms like Snowflake and Amazon S3 expose rich metadata and access patterns that observability tools can monitor. For example, Sifflet integrates with Snowflake to track schema changes, data freshness, and query patterns, while S3 integration enables us to monitor ingestion latency and file structure changes. These capabilities are key for real-time metrics and data quality monitoring.
Can Sifflet integrate with my existing data stack for seamless data pipeline monitoring?
Absolutely! One of Sifflet’s strengths is its seamless integration across your existing data stack. Whether you're working with tools like Airflow, Snowflake, or Kafka, Sifflet helps you monitor your data pipelines without needing to overhaul your infrastructure.
Can container-based environments improve incident response for data teams?
Absolutely. Containerized environments paired with observability tools like Kubernetes and Prometheus for data enable faster incident detection and response. Features like real-time alerts, dynamic thresholding, and on-call management workflows make it easier to maintain healthy pipelines and reduce downtime.
What is data observability and why is it important for modern data teams?
Data observability is the ability to monitor and understand the health of your data across the entire data stack. As data pipelines become more complex, having real-time visibility into where and why data issues occur helps teams maintain data reliability and trust. At Sifflet, we believe data observability is essential for proactive data quality monitoring and faster root cause analysis.
Why is smart alerting important in data observability?
Smart alerting helps your team focus on what really matters. Instead of flooding your Slack with every minor issue, a good observability tool prioritizes alerts based on business impact and data asset importance. This reduces alert fatigue and ensures the right people get notified at the right time. Look for platforms that offer customizable severity levels, real-time alerts, and integrations with your incident management tools like PagerDuty or email alerts.
Why is stakeholder trust in data so important, and how can we protect it?
Stakeholder trust is crucial because inconsistent or unreliable data can lead to poor decisions and reduced adoption of data-driven practices. You can protect this trust with strong data quality monitoring, real-time metrics, and consistent reporting. Data observability tools help by alerting teams to issues before they impact dashboards or reports, ensuring transparency and reliability.
What role does data lineage tracking play in volume monitoring?
Data lineage tracking is essential for root cause analysis when volume anomalies occur. It helps you trace where data came from and how it's been transformed, so if a volume drop happens, you can quickly identify whether it was caused by a failed API, upstream filter, or schema change. This context is key for effective data pipeline monitoring.

Want to try Sifflet on your BigQuery Stack?

Get in Touch Now!

I want to Try