Google BigQuery
Integrate Sifflet with BigQuery to monitor all table types, access field-level lineage, enrich metadata, and gain actionable insights for an optimized data observability strategy.




Metadata-based monitors and optimized queries
Sifflet leverages BigQuery's metadata APIs and relies on optimized queries, ensuring minimal costs and efficient monitor runs.


Usage and BigQuery metadata
Get detailed statistics about the usage of your BigQuery assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from BigQuery.
Field-level lineage
Have a complete understanding of how data flows through your platform via field-level end-to-end lineage for BigQuery.


External table support
Sifflet can monitor external BigQuery tables to ensure the quality of data in other systems like Google Cloud BigTable and Google Cloud Storage

Still have a question in mind ?
Contact Us
Frequently asked questions
What exactly is data quality, and why should teams care about it?
Data quality refers to how accurate, complete, consistent, and timely your data is. It's essential because poor data quality can lead to unreliable analytics, missed business opportunities, and even financial losses. Investing in data quality monitoring helps teams regain trust in their data and make confident, data-driven decisions.
How does Sifflet support collaboration across data teams?
Sifflet promotes un-siloed data quality by offering a unified platform where data engineers, analysts, and business users can collaborate. Features like pipeline health dashboards, data lineage tracking, and automated incident reports help teams stay aligned and respond quickly to issues.
What should I look for when choosing a data observability platform?
Great question! When evaluating a data observability platform, it’s important to focus on real capabilities like root cause analysis, data lineage tracking, and SLA compliance rather than flashy features. Our checklist helps you cut through the noise so you can find a solution that builds trust and scales with your data needs.
How does Sifflet help with monitoring data distribution?
Sifflet makes distribution monitoring easy by using statistical profiling to learn what 'normal' looks like in your data. It then alerts you when patterns drift from those baselines. This helps you maintain SLA compliance and avoid surprises in dashboards or ML models. Plus, it's all automated within our data observability platform so you can focus on solving problems, not just finding them.
What’s the role of an observability platform in scaling data trust?
An observability platform helps scale data trust by providing real-time metrics, automated anomaly detection, and data lineage tracking. It gives teams visibility into every layer of the data pipeline, so issues can be caught before they impact business decisions. When observability is baked into your stack, trust becomes a natural part of the system.
How does Sifflet maintain visual and interaction consistency across its observability platform?
We use a reusable component library based on atomic design principles, along with UX writing guidelines to ensure consistent terminology. This helps users quickly understand telemetry instrumentation, metrics collection, and incident response workflows without needing to relearn interactions across different parts of the platform.
Why is data quality management so important for growing organizations?
Great question! Data quality management helps ensure that your data remains accurate, complete, and aligned with business goals as your organization scales. Without strong data quality practices, teams waste time troubleshooting issues, decision-makers lose trust in reports, and systems make poor choices. With proper data quality monitoring in place, you can move faster, automate confidently, and build a competitive edge.
What’s the first step when building a modern data team from scratch?
The very first step is to set clear objectives that align with your company’s level of data maturity and business needs. This means involving stakeholders from different departments and deciding whether your focus is on exploratory analysis, business intelligence, or innovation through AI and ML. These goals will guide your choices in data stack, platform, and hiring.




















-p-500.png)
