BigQuery
Sifflet icon

Google BigQuery

Integrate Sifflet with BigQuery to monitor all table types, access field-level lineage, enrich metadata, and gain actionable insights for an optimized data observability strategy.

Metadata-based monitors and optimized queries

Sifflet leverages BigQuery's metadata APIs and relies on optimized queries, ensuring minimal costs and efficient monitor runs.

Usage and BigQuery metadata

Get detailed statistics about the usage of your BigQuery assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from BigQuery.

Field-level lineage

Have a complete understanding of how data flows through your platform via field-level end-to-end lineage for BigQuery.

External table support

Sifflet can monitor external BigQuery tables to ensure the quality of data in other systems like Google Cloud BigTable and Google Cloud Storage

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What kind of metadata can I see for a Fivetran connector in Sifflet?
When you click on a Fivetran connector node in the lineage, you’ll see key metadata like source and destination, sync frequency, current status, and the timestamp of the latest sync. This complements Sifflet’s existing metadata like owner and last refresh for complete context.
How do modern storage platforms like Snowflake and S3 support observability tools?
Modern platforms like Snowflake and Amazon S3 expose rich metadata and access patterns that observability tools can monitor. For example, Sifflet integrates with Snowflake to track schema changes, data freshness, and query patterns, while S3 integration enables us to monitor ingestion latency and file structure changes. These capabilities are key for real-time metrics and data quality monitoring.
How does Sifflet's ServiceNow integration help with incident response automation?
Great question! With our new ServiceNow integration, Sifflet can automatically create incidents from any data alert, helping your team respond faster and stay on top of critical issues. It's a big win for incident response automation and keeps your data observability workflows smooth and efficient.
How does the improved test connection process for Snowflake observability help teams?
The revamped 'Test Connection' process for Snowflake observability now provides detailed feedback on missing permissions or policy issues. This makes setup and troubleshooting much easier, especially during onboarding. It helps ensure smooth data pipeline monitoring and reduces the risk of refresh failures down the line.
What new investments is Sifflet making after the latest funding round?
We're excited to be investing in four key areas: enhancing our product roadmap, expanding our AI-powered capabilities, growing our North American presence, and accelerating hiring across teams. These efforts will help us continue leading in cloud data observability and better serve our growing customer base.
How does Sifflet make data observability more accessible to BI users?
Great question! At Sifflet, we're committed to making data observability insights available right where you work. That’s why we’ve expanded beyond our Chrome extension to integrate directly with popular Data Catalogs like Atlan, Alation, Castor, and Data Galaxy. This means BI users can access real-time metrics and data quality insights without ever leaving their workflow.
How can data observability help with SLA compliance and incident management?
Data observability plays a huge role in SLA compliance by enabling real-time alerts and proactive monitoring of data freshness, completeness, and accuracy. When issues occur, observability tools help teams quickly perform root cause analysis and understand downstream impacts, speeding up incident response and reducing downtime. This makes it easier to meet service level agreements and maintain stakeholder trust.
What benefits can I expect from using Sifflet with Google Cloud?
By combining Sifflet with Google Cloud, you get end-to-end cloud data observability, real-time metrics, and proactive monitoring across your data stack. It’s a powerful way to boost your data reliability and meet your SLA compliance goals.

Want to try Sifflet on your BigQuery Stack?

Get in Touch Now!

I want to Try