Google BigQuery
Integrate Sifflet with BigQuery to monitor all table types, access field-level lineage, enrich metadata, and gain actionable insights for an optimized data observability strategy.




Metadata-based monitors and optimized queries
Sifflet leverages BigQuery's metadata APIs and relies on optimized queries, ensuring minimal costs and efficient monitor runs.


Usage and BigQuery metadata
Get detailed statistics about the usage of your BigQuery assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from BigQuery.
Field-level lineage
Have a complete understanding of how data flows through your platform via field-level end-to-end lineage for BigQuery.


External table support
Sifflet can monitor external BigQuery tables to ensure the quality of data in other systems like Google Cloud BigTable and Google Cloud Storage

Still have a question in mind ?
Contact Us
Frequently asked questions
What’s next for data observability at Sifflet?
We’re focused on solving the next generation of challenges, like hybrid environments, end-to-end data lineage tracking, and scaling data trust. Whether it's batch data observability or real-time pipeline monitoring, our mission is to help organizations build resilient, transparent, and future-proof data stacks.
Can I use Sifflet to detect issues in my dbt models before they impact downstream dashboards?
Absolutely! Sifflet's real-time anomaly detection and full data lineage tracking make it easy to catch issues in your dbt models early. This proactive approach helps prevent broken dashboards and ensures data reliability across your analytics pipeline.
How does data observability improve the value of a data catalog?
Data observability enhances a data catalog by adding continuous monitoring, data lineage tracking, and real-time alerts. This means organizations can not only find their data but also trust its accuracy, freshness, and consistency. By integrating observability tools, a catalog becomes part of a dynamic system that supports SLA compliance and proactive data governance.
How does Sifflet enhance data governance for my organization?
Sifflet supports data governance by allowing you to classify assets with tags and labels, define business terms in a shared glossary, and track data lineage. These features help ensure consistent definitions and safe handling of sensitive data across your stack.
How does MCP support data quality monitoring in modern observability platforms?
MCP helps LLMs become active participants in data quality monitoring by giving them access to structured resources like schema definitions, data validation rules, and profiling metrics. At Sifflet, we use this to detect anomalies, enforce data contracts, and ensure SLA compliance more effectively.
How does Dailymotion foster a strong data culture beyond just using observability tools?
They’ve implemented a full enablement program with starter kits, trainings, and office hours to build data literacy and trust. Observability tools are just one part of the equation; the real focus is on enabling confident, autonomous decision-making across the organization.
How does Sifflet support data lineage tracking and context enrichment?
Sifflet enhances your data catalog with lineage tracking and context by incorporating dbt model descriptions, input-output dataset views, and AI-powered recommendations. This enrichment helps users quickly understand where data comes from and how it's used, making it easier to trust and leverage data confidently.
What exactly is the modern data stack, and why is it so popular now?
The modern data stack is a collection of cloud-native tools that help organizations transform raw data into actionable insights. It's popular because it simplifies data infrastructure, supports scalability, and enables faster, more accessible analytics across teams. With tools like Snowflake, dbt, and Airflow, teams can build robust pipelines while maintaining visibility through data observability platforms like Sifflet.




















-p-500.png)
