Google BigQuery
Integrate Sifflet with BigQuery to monitor all table types, access field-level lineage, enrich metadata, and gain actionable insights for an optimized data observability strategy.




Metadata-based monitors and optimized queries
Sifflet leverages BigQuery's metadata APIs and relies on optimized queries, ensuring minimal costs and efficient monitor runs.


Usage and BigQuery metadata
Get detailed statistics about the usage of your BigQuery assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from BigQuery.
Field-level lineage
Have a complete understanding of how data flows through your platform via field-level end-to-end lineage for BigQuery.


External table support
Sifflet can monitor external BigQuery tables to ensure the quality of data in other systems like Google Cloud BigTable and Google Cloud Storage

Still have a question in mind ?
Contact Us
Frequently asked questions
How does the new Fivetran integration enhance data observability in Sifflet?
Great question! With our new Fivetran integration, Sifflet now provides visibility into your data's journey even before it reaches your data platform. This means you can track data from its source through Fivetran connectors all the way downstream, offering truly end-to-end data observability.
How does Sifflet support data governance at scale?
Sifflet supports scalable data governance by letting you tag declared assets, assign owners, and classify sensitive data like PII. This ensures compliance with regulations and improves collaboration across teams using a centralized observability platform.
How does Dailymotion foster a strong data culture beyond just using observability tools?
They’ve implemented a full enablement program with starter kits, trainings, and office hours to build data literacy and trust. Observability tools are just one part of the equation; the real focus is on enabling confident, autonomous decision-making across the organization.
How does Sifflet’s Freshness Monitor scale across large data environments?
Sifflet’s Freshness Monitor is designed to scale effortlessly. Thanks to our dynamic monitoring mode and continuous scan feature, you can monitor thousands of data assets without manually setting schedules. It’s a smart way to implement data pipeline monitoring across distributed systems and ensure SLA compliance at scale.
How does Sifflet support data quality monitoring at scale?
Sifflet uses AI-powered dynamic monitors and data validation rules to automate data quality monitoring across your pipelines. It also integrates with tools like Snowflake and dbt to ensure data freshness checks and schema validations are embedded into your workflows without manual overhead.
Why is a data catalog essential for modern data teams?
A data catalog is critical because it helps teams find, understand, and trust their data. It centralizes metadata, making data assets searchable and understandable, which reduces duplication, speeds up analytics, and supports data governance. When paired with data observability tools, it becomes a powerful foundation for proactive data management.
How can organizations create a culture that supports data observability?
Fostering a data-driven culture starts with education and collaboration. Salma recommends training programs that boost data literacy and initiatives that involve all data stakeholders. This shared responsibility approach ensures better data governance and more effective data quality monitoring.
How does the Model Context Protocol (MCP) improve data observability with LLMs?
Great question! MCP allows large language models to access structured external context like pipeline metadata, logs, and diagnostics tools. At Sifflet, we use MCP to enhance data observability by enabling intelligent agents to monitor, diagnose, and act on issues across complex data pipelines in real time.




















-p-500.png)
