BigQuery
Sifflet icon

Google BigQuery

Integrate Sifflet with BigQuery to monitor all table types, access field-level lineage, enrich metadata, and gain actionable insights for an optimized data observability strategy.

Metadata-based monitors and optimized queries

Sifflet leverages BigQuery's metadata APIs and relies on optimized queries, ensuring minimal costs and efficient monitor runs.

Usage and BigQuery metadata

Get detailed statistics about the usage of your BigQuery assets, in addition to various metadata (like tags, descriptions, and table sizes) retrieved directly from BigQuery.

Field-level lineage

Have a complete understanding of how data flows through your platform via field-level end-to-end lineage for BigQuery.

External table support

Sifflet can monitor external BigQuery tables to ensure the quality of data in other systems like Google Cloud BigTable and Google Cloud Storage

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

When should organizations start thinking about data quality and observability?
The earlier, the better. Building good habits like CI/CD, code reviews, and clear documentation from the start helps prevent data issues down the line. Implementing telemetry instrumentation and automated data validation rules early on can significantly improve data pipeline monitoring and support long-term SLA compliance.
Can Sifflet help me monitor data drift and anomalies beyond what dbt offers?
Absolutely! While dbt is fantastic for defining tests, Sifflet takes it further with advanced data drift detection and anomaly detection. Our platform uses intelligent monitoring templates that adapt to your data’s behavior, so you can spot unexpected changes like missing rows or unusual values without setting manual thresholds.
How do Service Level Indicators (SLIs) help improve data product reliability?
SLIs are a fantastic way to measure the health and performance of your data products. By tracking metrics like data freshness, anomaly detection, and real-time alerts, you can ensure your data meets expectations and stays aligned with your team’s SLA compliance goals.
How can I avoid breaking reports and dashboards during migration?
To prevent disruptions, it's essential to use data lineage tracking. This gives you visibility into how data flows through your systems, so you can assess downstream impacts before making changes. It’s a key part of data pipeline monitoring and helps maintain trust in your analytics.
Can I use Sifflet’s data observability tools with other platforms besides Airbyte?
Absolutely! While we’ve built a powerful solution for Airbyte, our Declarative Lineage API is flexible enough to support other platforms like Kafka, Census, Hightouch, and Talend. You can use our sample Python scripts to integrate lineage from these tools and enhance your overall data observability strategy.
What does Sifflet plan to do with the new $18M in funding?
We're excited to use this funding to accelerate product innovation, expand our North American presence, and grow our team. Our focus will be on enhancing AI-powered capabilities, improving data pipeline monitoring, and helping customers maintain data reliability at scale.
What role does data lineage tracking play in observability?
Data lineage tracking is a key part of any robust data observability framework. It helps you understand where your data comes from, how it’s transformed, and where it flows. This visibility is essential for debugging issues, ensuring compliance, and building trust in your data pipelines. It's especially useful when paired with real-time data pipeline monitoring tools.
How does Sifflet help with anomaly detection in data pipelines?
Sifflet uses machine learning to power anomaly detection across your data ecosystem. Instead of relying on static rules, it learns your data’s patterns and flags unusual behavior—like a sudden drop in transaction volume. This helps teams catch issues early, avoid alert fatigue, and focus on incidents that actually impact business outcomes. It’s data quality monitoring with real intelligence.

Want to try Sifflet on your BigQuery Stack?

Get in Touch Now!

I want to Try