Databricks
Sifflet icon

The Ultimate Observability Duo for the Modern Data Stack

Monitor. Trust. Act.

With Sifflet fully integrated into your Databricks environment, your data teams gain end-to-end visibility, AI-powered monitoring, and business-context awareness, without compromising performance.

Why Choose Sifflet for Databricks?

Modern organizations rely on Databricks to unify data engineering, machine learning, and analytics. But as the platform grows in complexity, new risks emerge:

  • Broken pipelines that go unnoticed
  • Data quality issues that erode trust
  • Limited visibility across orchestration and workflows

That’s where Sifflet comes in. Our native integration with Databricks ensures your data pipelines are transparent, reliable, and business-aligned, at scale.

Deep Integration with Databricks

Sifflet enhances the observability of your Databricks stack across:

Delta Pipelines & DLT

Monitor transformation logic, detect broken jobs, and ensure SLAs are met across streaming and batch workflows.

Notebooks & ML Models

Trace data quality issues back to the tables or features powering production models.

Unity Catalog & Lakehouse Metadata

Integrate catalog metadata into observability workflows, enriching alerts with ownership and context.

Cross-Stack Connectivity

Sifflet integrates with dbt, Airflow, Looker, and more, offering a single observability layer that spans your entire lakehouse ecosystem.

End-to-End Data Observability

  • Full monitoring across the data lifecycle: from raw ingestion in Databricks to BI consumption
  • Real-time alerts for freshness, volume, nulls, and schema changes
  • AI-powered prioritization so teams focus on what really matters

Deep Lineage & Root Cause Analysis

  • Column-level lineage across tables, SQL jobs, notebooks, and workflows
  • Instantly surface the impact of schema changes or upstream issues
  • Native integration with Unity Catalog for a unified metadata view

Operational & Governance Insights

  • Query-level telemetry, access logs, job runs, and system metadata
  • All fully queryable and visualized in observability dashboards
  • Enables governance, cost optimization, and security monitoring

Native Integration with Databricks Ecosystem

  • Tight integration with Databricks REST APIs and Unity Catalog
  • Observability for Databricks Workflows from orchestration to execution
  • Plug-and-play setup, no heavy engineering required

Built for Enterprise-Grade Data Teams

  • Certified Databricks Technology Partner
  • Deployed in production across global enterprises like St-Gobain and or Euronext
  • Designed for scale, governance, and collaboration

“The real value isn’t just in surfacing anomalies. It’s in turning observability into a strategic advantage. Sifflet enables exactly that, on Databricks, at scale.”
Senior Data Leader, North American Enterprise (Anonymous by Choice but happy)

Perfect For…

  • Data leaders scaling Databricks across teams
  • Analytics teams needing trustworthy dashboards
  • Governance teams requiring real lineage and audit trails
  • ML teams who need reliable, explainable training data

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How does Sifflet help with compliance monitoring and audit logging?
Sifflet is ISO 27001 certified and SOC 2 compliant, and we use a separate secret manager to handle credentials securely. This setup ensures a strong audit trail and tight access control, making compliance monitoring and audit logging seamless for your data teams.
How is Etam using data observability to support its 2025 strategy?
Etam is leveraging data observability as a foundational element of its 2025 data strategy. With Sifflet’s observability platform, the team can monitor data quality, detect issues early, and ensure data reliability, which helps them move faster and with more confidence across the business.
What should I look for in a modern data discovery tool?
Look for features like self-service discovery, automated metadata collection, and end-to-end data lineage. Scalability is key too, especially as your data grows. Tools like Sifflet also integrate data observability, so you can monitor data quality and pipeline health while exploring your data assets.
How often is the data refreshed in Sifflet's Data Sharing pipeline?
The data shared through Sifflet's optimized pipeline is refreshed every four hours. This ensures you always have timely and accurate insights for data quality monitoring, anomaly detection, and root cause analysis within your own platform.
Can Sifflet help reduce false positives during holidays or special events?
Absolutely! We know that data patterns can shift during holidays or unique business dates. That’s why Sifflet now lets you exclude these dates from alerts by selecting from common calendars or customizing your own. This helps reduce alert fatigue and improves the accuracy of anomaly detection across your data pipelines.
How is data freshness different from latency or timeliness?
Great question! While these terms are often used interchangeably, they each mean something different. Data freshness is about how up-to-date your data is. Latency measures the delay from data generation to availability, and timeliness refers to whether that data arrives within expected time windows. Understanding these differences is key to effective data pipeline monitoring and SLA compliance.
How does Sifflet's integration with dbt Core improve data observability?
Great question! By integrating with dbt Core, Sifflet enhances data observability across your entire data stack. It helps you monitor dbt test coverage, map tests to downstream dependencies using data lineage tracking, and consolidate metadata like tags and descriptions, all in one place.
Why is data categorization important for data governance and compliance?
Effective data categorization is essential for data governance and compliance because it helps identify sensitive data like PII, ensuring the correct protection policies are applied. With Sifflet’s classification tags, governance teams can easily locate and safeguard sensitive information, supporting GDPR data monitoring and overall data security compliance.

Want to try Sifflet on your Databricks Stack?

Get in touch now!

I want to try