Databricks
Sifflet icon

The Ultimate Observability Duo for the Modern Data Stack

Monitor. Trust. Act.

With Sifflet fully integrated into your Databricks environment, your data teams gain end-to-end visibility, AI-powered monitoring, and business-context awareness, without compromising performance.

Used by
No items found.

Why Choose Sifflet for Databricks?

Modern organizations rely on Databricks to unify data engineering, machine learning, and analytics. But as the platform grows in complexity, new risks emerge:

  • Broken pipelines that go unnoticed
  • Data quality issues that erode trust
  • Limited visibility across orchestration and workflows

That’s where Sifflet comes in. Our native integration with Databricks ensures your data pipelines are transparent, reliable, and business-aligned, at scale.

Deep Integration with Databricks

Sifflet enhances the observability of your Databricks stack across:

Delta Pipelines & DLT

Monitor transformation logic, detect broken jobs, and ensure SLAs are met across streaming and batch workflows.

Notebooks & ML Models

Trace data quality issues back to the tables or features powering production models.

Unity Catalog & Lakehouse Metadata

Integrate catalog metadata into observability workflows, enriching alerts with ownership and context.

Cross-Stack Connectivity

Sifflet integrates with dbt, Airflow, Looker, and more, offering a single observability layer that spans your entire lakehouse ecosystem.

End-to-End Data Observability

  • Full monitoring across the data lifecycle: from raw ingestion in Databricks to BI consumption
  • Real-time alerts for freshness, volume, nulls, and schema changes
  • AI-powered prioritization so teams focus on what really matters

Deep Lineage & Root Cause Analysis

  • Column-level lineage across tables, SQL jobs, notebooks, and workflows
  • Instantly surface the impact of schema changes or upstream issues
  • Native integration with Unity Catalog for a unified metadata view

Operational & Governance Insights

  • Query-level telemetry, access logs, job runs, and system metadata
  • All fully queryable and visualized in observability dashboards
  • Enables governance, cost optimization, and security monitoring

Native Integration with Databricks Ecosystem

  • Tight integration with Databricks REST APIs and Unity Catalog
  • Observability for Databricks Workflows from orchestration to execution
  • Plug-and-play setup, no heavy engineering required

Built for Enterprise-Grade Data Teams

  • Certified Databricks Technology Partner
  • Deployed in production across global enterprises like St-Gobain and or Euronext
  • Designed for scale, governance, and collaboration

“The real value isn’t just in surfacing anomalies. It’s in turning observability into a strategic advantage. Sifflet enables exactly that, on Databricks, at scale.”
Senior Data Leader, North American Enterprise (Anonymous by Choice but happy)

Perfect For…

  • Data leaders scaling Databricks across teams
  • Analytics teams needing trustworthy dashboards
  • Governance teams requiring real lineage and audit trails
  • ML teams who need reliable, explainable training data
Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

Why is data observability becoming so important for businesses in 2025?
Great question! As Salma Bakouk shared in our recent webinar, data observability is critical because it builds trust and reliability across your data ecosystem. With poor data quality costing companies an average of $13 million annually, having a strong observability platform helps teams proactively detect issues, ensure data freshness, and align analytics efforts with business goals.
Why is collaboration important in building a successful observability platform?
Collaboration is key to building a robust observability platform. At Sifflet, our teams work cross-functionally to ensure every part of the platform, from data lineage tracking to real-time metrics collection, aligns with business goals. This teamwork helps us deliver a more comprehensive and user-friendly solution.
Why is data observability essential for AI success?
AI depends on trustworthy data, and that’s exactly where data observability comes in. With features like data drift detection, root cause analysis, and real-time alerts, observability tools ensure that your AI systems are built on a solid foundation. No trust, no AI—that’s why dependable data is the quiet engine behind every successful AI strategy.
How can I ensure SLA compliance during data integration?
To meet SLA compliance, it's crucial to monitor ingestion latency, data freshness checks, and throughput metrics. Implementing data observability dashboards can help you track these in real time and act quickly when something goes off track. Sifflet’s observability platform helps teams stay ahead of issues and meet their data SLAs confidently.
How does Sifflet support collaboration across data teams?
Sifflet promotes un-siloed data quality by offering a unified platform where data engineers, analysts, and business users can collaborate. Features like pipeline health dashboards, data lineage tracking, and automated incident reports help teams stay aligned and respond quickly to issues.
What role does data lineage tracking play in AI compliance and governance?
Data lineage tracking is essential for understanding where your AI training data comes from and how it has been transformed. With Sifflet’s field-level lineage and Universal Integration API, you get full transparency across your data pipelines. This is crucial for meeting regulatory requirements like GDPR and the AI Act, and it strengthens your overall data governance strategy.
How does Sifflet use MCP to enhance observability in distributed systems?
At Sifflet, we’re leveraging MCP to build agents that can observe, decide, and act across distributed systems. By injecting telemetry data, user context, and pipeline metadata as structured resources, our agents can navigate complex environments and improve distributed systems observability in a scalable and modular way.
Why should organizations shift from firefighting to fire prevention in their data operations?
Shifting to fire prevention means proactively addressing data health issues before they impact users. By leveraging data lineage and observability tools, teams can perform impact assessments, monitor data quality, and implement preventive strategies that reduce downtime and improve SLA compliance.
Still have questions?

Want to try Sifflet on your Databricks Stack?

Get in touch now!