Contact us

Tame your stack.

If you want to learn more about data observability and what Sifflet can do for you,
drop us a message below and we'll get back to you as soon as possible.

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Show Your Stack Who’s Boss

Unified data observability that packs a three-in-one punch. From data discovery to integrated monitoring and troubleshooting capabilities, you’ll be the one in charge.

Seamlessly connect with all your favorite data tools to centralize insights and unlock the full potential of your data ecosystem.
 g2 labels
Join the ranks of happy customers who’ve made Sifflet a G2 leader, trusted for its innovation and impact
sifflet platform graph
Stay ahead of issues with real-time alerts that keep you informed and in control of your data health
Sifflet platform tags
Organize, discover, and leverage your data assets effortlessly with a smart, searchable catalog built for modern teams.
Sifflet platform code extract
Harness the power of AI-driven suggestions to improve efficiency, accuracy, and decision-making across your workflows.
sifflet work team
Empower your team with tailored access, enabling secure collaboration that drives smarter decisions.

Frequently asked questions

What’s Sifflet’s vision for data observability in 2025?
Our 2025 vision is all about pushing the boundaries of cloud data observability. We're focusing on deeper automation, AI-driven insights, and expanding our observability platform to cover everything from real-time metrics to predictive analytics monitoring. It's about making data operations more resilient, transparent, and scalable.
What makes data observability different from traditional monitoring tools?
Traditional monitoring tools focus on infrastructure and application performance, while data observability digs into the health and trustworthiness of your data itself. At Sifflet, we combine metadata monitoring, data profiling, and log analysis to provide deep insights into pipeline health, data freshness checks, and anomaly detection. It's about ensuring your data is accurate, timely, and reliable across the entire stack.
How does integrating data observability improve SLA compliance?
Integrating data observability helps you stay on top of data issues before they impact your users. With real-time metrics, pipeline error alerting, and dynamic thresholding, you can catch problems early and ensure your data meets SLA requirements. This proactive monitoring helps teams maintain trust and deliver consistent, high-quality data services.
What benefits did jobvalley experience from using Sifflet’s data observability platform?
By using Sifflet’s data observability platform, jobvalley improved data reliability, streamlined data discovery, and enhanced collaboration across teams. These improvements supported better decision-making and helped the company maintain a strong competitive edge in the HR tech space.
What does 'observability culture' mean at Adaptavist?
For Adaptavist, observability culture means going beyond tools. It's about clear ownership of alerts, integrating data quality monitoring into sprints, and giving stakeholders ways to provide feedback directly in dashboards. They even track observability metrics to continuously improve their own observability practices.
Can data observability improve collaboration across data teams?
Absolutely! With shared visibility into data flows and transformations, observability platforms foster better communication between data engineers, analysts, and business users. Everyone can see what's happening in the pipeline, which encourages ownership and teamwork around data reliability.
Why is data observability essential for building trusted data products?
Great question! Data observability is key because it helps ensure your data is reliable, transparent, and consistent. When you proactively monitor your data with an observability platform like Sifflet, you can catch issues early, maintain trust with your data consumers, and keep your data products running smoothly.
When should companies start implementing data quality monitoring tools?
Ideally, data quality monitoring should begin as early as possible in your data journey. As Dan Power shared during Entropy, fixing issues at the source is far more efficient than tracking down errors later. Early adoption of observability tools helps you proactively catch problems, reduce manual fixes, and improve overall data reliability from day one.
Still have questions?

Data Observability is Now

Make Data Observability Everyone’s Business Now