Home
Contact
Contact Us
Tame %%your%% stack.
If you want to learn more about data observability and what Sifflet can do for you, drop us a message below and we'll get back to you as soon as possible.






Still have a question in mind ?
Contact Us
Frequently asked questions
How does the updated lineage graph help with root cause analysis?
By merging dbt model nodes with dataset nodes, our streamlined lineage graph removes clutter and highlights what really matters. This cleaner view enhances root cause analysis by letting you quickly trace issues back to their source with fewer distractions and more context.
Why is combining data catalogs with data observability tools the future of data management?
Combining data catalogs with data observability tools creates a holistic approach to managing data assets. While catalogs help users discover and understand data, observability tools ensure that data is accurate, timely, and reliable. This integration supports better decision-making, improves data reliability, and strengthens overall data governance.
What role does machine learning play in data quality monitoring at Sifflet?
Machine learning is at the heart of our data quality monitoring efforts. We've developed models that can detect anomalies, data drift, and schema changes across pipelines. This allows teams to proactively address issues before they impact downstream processes or SLA compliance.
Can Sifflet integrate with my existing data stack for seamless data pipeline monitoring?
Absolutely! One of Sifflet’s strengths is its seamless integration across your existing data stack. Whether you're working with tools like Airflow, Snowflake, or Kafka, Sifflet helps you monitor your data pipelines without needing to overhaul your infrastructure.
What should I look for when choosing a data observability platform?
Great question! When evaluating a data observability platform, it’s important to focus on real capabilities like root cause analysis, data lineage tracking, and SLA compliance rather than flashy features. Our checklist helps you cut through the noise so you can find a solution that builds trust and scales with your data needs.
What’s a real-world example of Dailymotion using real-time metrics to drive business value?
One standout example is their ad inventory forecasting tool. By embedding real-time metrics into internal tools, sales teams can plan campaigns more precisely and avoid last-minute scrambles. It’s a great case of using data to improve both accuracy and efficiency.
How does data observability differ from traditional data quality monitoring?
Great question! While data quality monitoring focuses on alerting teams when data deviates from expected parameters, data observability goes further by providing context through data lineage tracking, real-time metrics, and root cause analysis. This holistic view helps teams not only detect issues but also understand and fix them faster, making it a more proactive approach.
How do JOIN strategies affect query execution and data observability?
JOINs can be very resource-intensive if not used correctly. Choosing the right JOIN type and placing conditions in the ON clause helps reduce unnecessary data processing, which is key for effective data observability and real-time metrics tracking.