Home
Contact
Contact Us
Tame %%your%% stack.
If you want to learn more about data observability and what Sifflet can do for you, drop us a message below and we'll get back to you as soon as possible.






Still have a question in mind ?
Contact Us
Frequently asked questions
What can I expect to learn from Sifflet’s session on cataloging and monitoring data assets?
Our Head of Product, Martin Zerbib, will walk you through how Sifflet enables data lineage tracking, real-time metrics, and data profiling at scale. You’ll get a sneak peek at our roadmap and see how we’re making data more accessible and reliable for teams of all sizes.
What is Flow Stopper and how does it help with data pipeline monitoring?
Flow Stopper is a powerful feature in Sifflet's observability platform that allows you to pause vulnerable pipelines at the orchestration layer before issues reach production. It helps with proactive data pipeline monitoring by catching anomalies early and preventing downstream damage to your data systems.
Does Sifflet store any of my company’s data?
No, Sifflet does not store your data. We designed our platform to discard any data previews immediately after display, and we only retain metadata like table and column names. This approach supports GDPR compliance and strengthens your overall data governance strategy.
Can Sage really help with root cause analysis and incident response?
Absolutely! Sage is designed to retain institutional knowledge, track code changes, and map data lineage in real time. This makes root cause analysis faster and more accurate, which is a huge win for incident response and overall data pipeline monitoring.
What role did data observability play in Carrefour’s customer engagement strategy?
Data observability was crucial in maintaining high data quality for loyalty programs and marketing campaigns. With real-time metrics and anomaly detection in place, Carrefour was able to improve customer satisfaction and retention through more accurate and timely insights.
What makes a data observability platform truly end-to-end?
Great question! A true data observability platform doesn’t stop at just detecting issues. It guides you through the full lifecycle: monitoring, alerting, triaging, investigating, and resolving. That means it should handle everything from data quality monitoring and anomaly detection to root cause analysis and impact-aware alerting. The best platforms even help prevent issues before they happen by integrating with your data pipeline monitoring tools and surfacing business context alongside technical metrics.
How does Sifflet support data governance at scale?
Sifflet supports scalable data governance by letting you tag declared assets, assign owners, and classify sensitive data like PII. This ensures compliance with regulations and improves collaboration across teams using a centralized observability platform.
Why is data observability important for data transformation pipelines?
Great question! Data observability is essential for transformation pipelines because it gives teams visibility into data quality, pipeline performance, and transformation accuracy. Without it, errors can go unnoticed and create downstream issues in analytics and reporting. With a solid observability platform, you can detect anomalies, track data freshness, and ensure your transformations are aligned with business goals.






-p-500.png)
