DISCOVER

Search, Shop and Adopt Your Data

Everyone’s more productive when they can discover, browse, preview and adopt the data they need with confidence, all from one spot.

Sifflet dashboard features overview

Intelligent by Design

At last, a data catalog that’s smart. Powered by algorithms that make it easy to find what you’re looking for in seconds and LLM-assisted documentation and classification recommendations that can even detect PII.

Nothing But the Truth 

From a business glossary to centralized metadata, give everyone a single source of truth. And you’ll never question data accuracy, freshness or reliability thanks to built-in monitoring. 

Easy to Connect and Use

The moment you open your data catalog, it’s ready for whatever you need. Whether you’re on the product team and want to understand how churn rate is computed or a business analyst in search of the right data source, intuitive UI means everyone can collaborate.

BROWSE

Single Source of Truth 

A one-stop shop for data knowledge at your company. 

  • E2E with OOTB cataloguing and declarative
  • Maintain data documentation and classification thanks to GenAI assisted asset descriptions that can detect PII
  • Create a business glossary so everyone’s on the same page
  • Preview your data in one click
Sifflet dashboard overview
SHOP

Smart Data Assets Search

Find and adopt the data you need for your work, in record time.

  • Simplify discovery with smart data sorting algorithms
  • Segment data access for business domains
  • Use the Sifflet Insights browser extension while you work
Sifflet dashboard overview
TRUST

Built-In Monitoring

When monitoring is built in, you’ll never question data freshness, accuracy, or reliability.

  • Enable data mesh and data self-serve thanks to built-in monitoring and data asset health status
  • Enhance and assess monitoring coverage with filtering options
Sifflet dashboard overview
TEAMS

On the Same Page

Built for Everyone

Sifflet's data catalog makes is simple to give everyone a shared understanding of your data assets.

Data Users

Find the data you need when you need it, understand what data powers your dashboards, and make strategic recommendations and plans with confidence.

Data Engineers

Sifflet’s catalog is embedded in a data observability platform, not the other way around. That means you are better equipped to ensure reliability and quality than with a standalone catalog.

Data Leaders

Improve your team’s productivity by giving them back up to 40% of the time they spend looking for the right data and vetting quality and empower business owners with clean documentation.

Drive Data Adoption Now

Sifflet makes sure your teams never question the accuracy, freshness, or quality of assets in your catalog.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

How is AI shaping the future of data observability?

AI enhances data observability with advanced anomaly detection, predictive analytics, and automated root cause analysis. This helps teams identify and resolve issues faster while reducing manual effort. Have a look at how Sifflet is leveraging AI for better data observability here

What is data lineage and why does it matter for modern data teams?
Data lineage is the process of mapping the journey of data from its origin to its final destination, including all the transformations it undergoes. It's essential for data pipeline monitoring and root cause analysis because it helps teams quickly identify where data issues originate, saving time and reducing stress under pressure.
How does Sifflet help detect and prevent data drift in AI models?
Sifflet is designed to monitor subtle changes in data distributions, which is key for data drift detection. This helps teams catch shifts in data that could negatively impact AI model performance. By continuously analyzing incoming data and comparing it to historical patterns, Sifflet ensures your models stay aligned with the most relevant and reliable inputs.
Why is embedding observability tools at the orchestration level important?
Embedding observability tools like Flow Stopper at the orchestration level gives teams visibility into pipeline health before data hits production. This kind of proactive monitoring is key for maintaining data reliability and reducing downtime due to broken pipelines.
How does Sifflet support diversity and innovation in the data observability space?
Diversity and innovation are core values at Sifflet. We believe that a diverse team brings a wider range of perspectives, which leads to more creative solutions in areas like cloud data observability and predictive analytics monitoring. Our culture encourages experimentation and continuous learning, making it a great place to grow.
Why is data observability important when using ETL or ELT tools?
Data observability is crucial no matter which integration method you use. With ETL or ELT, you're moving and transforming data across multiple systems, which can introduce errors or delays. An observability platform like Sifflet helps you track data freshness, detect anomalies, and ensure SLA compliance across your pipelines. This means fewer surprises, faster root cause analysis, and more reliable data for your business teams.
Why is data quality monitoring so important for data-driven decision-making, especially in uncertain times?
Great question! Data quality monitoring helps ensure that the data you're relying on is accurate, timely and complete. In high-stress or uncertain situations, poor data can lead to poor decisions. By implementing scalable data quality monitoring, including anomaly detection and data freshness checks, you can avoid the 'garbage in, garbage out' problem and make confident, informed decisions.
Can classification tags improve data pipeline monitoring?
Absolutely! By tagging fields like 'Low Cardinality', data teams can quickly identify which fields are best suited for specific monitors. This enables more targeted data pipeline monitoring, making it easier to detect anomalies and maintain SLA compliance across your analytics pipeline.
Still have questions?