Make Data %%Observability%% Everyone’s Business

Sifflet is an AI-augmented data observability platform built for data teams with business users in mind.

The premier %%virtual summit%% on data reliability, observability, and the future of trustworthy AI.

What Our Customers Say

See Sifflet in action!

Curious about how Sifflet can transform the way your team works with data?

Join our 30-min biweekly demo to see how data leaders, engineers, and platform teams use Sifflet to detect, resolve, and prevent issues—before they impact the business.

See Data Breakthroughs

Sifflet helps you remove the obstacles that stand in the way of superior insights, value, and products from data.

Supercharge Productivity 

Data engineers spend up 50% of their time on mundane reliability tasks and data analysts between 40 to 80% of their time vetting data quality. Sifflet augments your team’s capabilities and supercharges their productivity. 

Uplevel Data Reliability
and Quality 

See next-level improvements to data reliability and quality thanks to tools that make it easier and faster than ever to find and fix your data. 

Empower Ownership, Enable Self-Serve 

Sifflet ensures that your colleagues always know the health status of data, can give input to monitors, and take ownership of their data assets. Collaboration with data teams improves and it’s easier to enable data-mesh and self-serve.

TRACEABLE

Improve productivity and collaboration between engineers and data consumers

For everyone, working with and finding data becomes intuitive with a simple and automated UI, data discovery is simplified with a data catalog, and it is easy to connect with coding workflows.

Sifflet dashboard features overview
Sifflet dashboard data monitoring
Data Lineage

Troubleshoot

When data breaks, take charge. Use Sifflet’s robust tracing capabilities to map your data upstream, downstream and across data layers. You’ll gain insight into your data across the entire lifecycle and see rapid improvements to data quality that benefit the entire company.

Sifllet dashboard data quality monitoring
Data quality monitoring

Monitor

Monitor it all. And more.  Sifflet offers both out of the box and custom monitoring capability, so your teams can keep an eye on assets you know need observation…and even those you don’t.  Our AI optimizes your coverage and minimizes noise, getting smarter as it goes.  Your data’s reliability is reinforced, helping to grow confidence in your numbers. Now that’s performance. 

Built for %%Everyone%%

Sifflet helps you remove the obstacles that stand in the way of superior insights, value, and products from data. 

Data Leaders

Drive innovation and enable AI. With Sifflet, you can transform your data strategy, governance, and team productivity while ensuring efficient and scalable data infrastructure.

Read more

Data Engineers

Boost your productivity. Sifflet gives you end-to-end visibility into your architecture, assets, and pipelines. Advanced monitoring ensures you get the right alerts and lineage helps you get to resolution faster.

Read more

Data Users

No more data discrepancies. Sifflet ensures the highest levels of data quality. Your teams can make the best possible decisions for your company, unlocking new levels of performance that help you compete in the age of AI.

Read more

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How do logs contribute to observability in data pipelines?
Logs capture interactions between data and external systems or users, offering valuable insights into data transformations and access patterns. They are essential for detecting anomalies, understanding data drift, and improving incident response in both batch and streaming data monitoring environments.
How does Sentinel help reduce alert fatigue in modern data environments?
Sentinel intelligently analyzes metadata like data lineage and schema changes to recommend what really needs monitoring. By focusing on high-impact areas, it cuts down on noise and helps teams manage alert fatigue while optimizing monitoring costs.
How does Sifflet help identify performance bottlenecks in dbt models?
Sifflet's dbt runs tab offers deep insights into model execution, cost, and runtime, making it easy to spot inefficiencies. You can also use historical performance data to set up custom dashboards and proactive monitors. This helps with capacity planning and ensures your data pipelines stay optimized and cost-effective.
Is Sifflet's Data Sharing compatible with cloud data platforms like Snowflake or BigQuery?
Yes, it is! Sifflet currently supports Data Sharing to Snowflake, BigQuery, and S3, with more destinations on the way. This makes it easy to integrate Sifflet into your cloud data observability strategy and leverage your existing infrastructure for deeper insights and proactive monitoring.
Why is Sifflet focusing on AI agents for observability now?
With data stacks growing rapidly and teams staying the same size or shrinking, proactive monitoring is more important than ever. These AI agents bring memory, reasoning, and automation into the observability platform, helping teams scale their efforts with confidence and clarity.
What kind of monitoring capabilities does Sifflet offer out of the box?
Sifflet comes with a powerful library of pre-built monitors for data profiling, data freshness checks, metrics health, and more. These templates are easily customizable, supporting both batch data observability and streaming data monitoring, so you can tailor them to your specific data pipelines.
Can I define data quality monitors as code using Sifflet?
Absolutely! With Sifflet's Data-Quality-as-Code (DQaC) v2 framework, you can define and manage thousands of monitors in YAML right from your IDE. This Everything-as-Code approach boosts automation and makes data quality monitoring scalable and developer-friendly.
What is data observability and why is it important for modern data teams?
Data observability is the ability to monitor, understand, and troubleshoot data health across the entire data stack. It's essential for modern data teams because it helps ensure data reliability, improves trust in analytics, and prevents costly issues caused by broken data pipelines or inaccurate dashboards. With the rise of complex infrastructures and real-time data usage, having a strong observability platform in place is no longer optional.

More data. %%Less Chaos.%%

If you want a smoother running stack,
let’s talk about what Sifflet can do for you. 

Contact Us