Take Charge. Trace %%Anything.%%

Map out the relationships between your data assets, find what’s broken upstream and prevent downstream impacts with advanced lineage. 

Sifflet dashboard features overview

Master Mapping

Map your asset dependencies from end-to-end. Modern UI makes it easy to look at lineage at both the table and column level. 

Find Root Causes Fast 

When data breaks, you need to know why and where. Sifflet’s lineage capabilities help you get to the root cause fast. 

Take Care of Business

Assess the impact of data quality issues and prevent downstream trouble before it happens. 

OVERSEE

Precision Mapping

See how data moves through your system from its origin to final destination and all the stops in between.

  • Map your data dependencies on day one with OOTB lineage enabled by integrations & SQL history parsing
  • Benefit from last mile dependencies mapping with declarative lineage
  • Work with column level granularity
Sifflet dashboard features overview
UNDERSTAND

Full Context At Your Fingertips

Everything you need to get to resolution, faster.

  • Asset Health Status
  • Documentation
Sifflet dashboard features overview
EXPLORE

Effortless Navigation & Exports

Investigate, collaborate and share your lineage. 

  • Navigate lineage effortlessly by folding and unfolding your map
  • Screengrab lineage 
  • Export your lineage as a CSV
Sifflet dashboard features overview

Reinforced %%Reliability%%

Sifflet’s monitoring features reinforce data reliability for all users, so business can deliver.

Data Engineers

With Sifflet’s lineage, get up to 50% of the time you spend on mundane reliability tasks back and gain insight into your data across the entire lifecycle.

Read more

Data Leaders

Reduce data downtime and help the whole company benefit from better data quality by ensuring your teams can get to the bottom of root causes, faster.

Read more

Data Users

Understand where your data comes from to make informed decisions and break down silos between teams.

Read more

%%Improve%% Data Quality Rapidly

Sifflet’s lineage features help you break silos between teams and get to the bottom of root causes, so the whole company benefits from better data quality.

Speak with our experts

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

Why is data governance important when treating data as a product?
Data governance ensures that data is collected, managed, and shared responsibly, which is especially important when data is treated as a product. It helps maintain compliance with regulations and supports data quality monitoring. With proper governance in place, businesses can confidently deliver reliable and secure data products.
Can I use custom dbt metadata for data governance in Sifflet?
Absolutely! Our new dbt tab surfaces custom metadata defined in your dbt models, which you can leverage for better data governance and data profiling. It’s all about giving you the flexibility to manage your data assets exactly the way you need.
What is data observability and why is it important for modern data teams?
Data observability is the ability to monitor and understand the health of your data across the entire data stack. As data pipelines become more complex, having real-time visibility into where and why data issues occur helps teams maintain data reliability and trust. At Sifflet, we believe data observability is essential for proactive data quality monitoring and faster root cause analysis.
What exactly is data observability, and how is it different from traditional data monitoring?
Great question! Data observability goes beyond traditional data monitoring by not only detecting when something breaks in your data pipelines, but also understanding why it matters. While monitoring might tell you a pipeline failed, data observability connects that failure to business impact—like whether your CFO’s dashboard is now showing outdated numbers. It's about trust, context, and actionability.
What’s the difference between static and dynamic freshness monitoring modes?
Great question! In static mode, Sifflet checks whether data has arrived during a specific time slot and alerts you if it hasn’t. In dynamic mode, our system learns your data arrival patterns over time and only sends alerts when something truly unexpected happens. This helps reduce alert fatigue while maintaining high standards for data quality monitoring.
What’s a real-world example of Dailymotion using real-time metrics to drive business value?
One standout example is their ad inventory forecasting tool. By embedding real-time metrics into internal tools, sales teams can plan campaigns more precisely and avoid last-minute scrambles. It’s a great case of using data to improve both accuracy and efficiency.
Why is data observability gaining momentum now, even though software observability has been around for a while?
Great question! Software observability took off in the 2010s with the rise of cloud-native apps, but data observability is catching up fast. As businesses start treating data as a mission-critical asset—especially with the growth of AI and cloud data platforms like Snowflake—the need for real-time visibility, data reliability, and governance has become urgent. We're in the early innings, but the pace is accelerating quickly.
Why is data observability important for data transformation pipelines?
Great question! Data observability is essential for transformation pipelines because it gives teams visibility into data quality, pipeline performance, and transformation accuracy. Without it, errors can go unnoticed and create downstream issues in analytics and reporting. With a solid observability platform, you can detect anomalies, track data freshness, and ensure your transformations are aligned with business goals.