Lean. Mean. Monitoring %%Machine.%% 

Finally, dynamic monitoring that can keep up with your stack. AI features optimize your coverage and minimize noise, detecting issues before they arise. 

Sifflet dashboard features overview

Customize to Your Heart’s Content

Sifflet offers both a robust library of out of the box monitors and customization capability. Your teams decide what needs monitoring and how to set it up. 

Bye-Bye, Alert Fatigue

Data engineers don’t need more alerts, they need smarter alerts. Our AI learns adaptively as it goes to optimize coverage and minimize noise.  

Hello, Data Reliability 

Data reliability is reinforced with less manual work for technical teams, faster response times, and overall stronger performance. 

IMPLEMENT

Ready-to-Go Monitors 

Quick set up and implementation means quicker results. 

  • See value instantly with pre-defined templates to check data at field and table levels
  • Help your business users and technical teams meet their quality and reliability objectives thanks to ready-to-go monitors
Sifflet dashboard overview
SUPERVISE

Lifecycle Monitoring

End-to-end coverage that never sleeps. 

  • Detect anomalies continuously thanks to ML models 
  • Give your business users ownership over monitors through LLM monitoring setup 
  • Maintain control and accuracy with optional manual setup and user feedback
Sifflet dashboard features overview
MAINTAIN

Scalability & Optimization

Monitoring that’s easy to maintain and coverage that’s just right.

  • Optimize monitoring coverage and minimize noise levels with AI-powered suggestions and supervision
  • Implement programmatic monitoring set up and maintenance with Data Quality as Code (DQaC)
Sifflet dashboard overview

Reinforced %%Reliability%%

Sifflet’s monitoring features reinforce data reliability for all users, so business can deliver.

Data Users

Stop working with corrupt data. Sifflet embeds alerts in your dashboards, so you know exactly when there’s an incident or issue. And you can set up data monitors on your own.

Read more

Data Engineers

No more scaling monitors manually. Sifflet’s ML will optimize coverage for you, so you can be proactive instead of reactive in reducing downtimes.

Read more

Data Leaders

Give your teams the tools they need to reduce monitoring tasks by up to 50% thanks to Sifflet’s monitoring features.

Read more

Data Reliability, %%Reinforced%%

Sifflet’s monitoring features reinforce data reliability for all users, so business can deliver.

Speak with our Experts

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What does 'observability culture' mean at Adaptavist?
For Adaptavist, observability culture means going beyond tools. It's about clear ownership of alerts, integrating data quality monitoring into sprints, and giving stakeholders ways to provide feedback directly in dashboards. They even track observability metrics to continuously improve their own observability practices.
How can organizations create a culture that supports data observability?
Fostering a data-driven culture starts with education and collaboration. Salma recommends training programs that boost data literacy and initiatives that involve all data stakeholders. This shared responsibility approach ensures better data governance and more effective data quality monitoring.
What is data observability and why is it important for modern data teams?
Data observability is the practice of monitoring data as it moves through your pipelines to detect, understand, and resolve issues proactively. It’s crucial because it helps data teams ensure data reliability, improve decision-making, and reduce the time spent firefighting data issues. With the growing complexity of data systems, having a robust observability platform is key to maintaining trust in your data.
Can I monitor the health of my Firebolt tables in real time with Sifflet?
Absolutely! With Sifflet's observability platform, you can view the health status of your Firebolt tables in real time. This allows for proactive data pipeline monitoring and helps ensure SLA compliance across your analytics workflows.
Why is data observability gaining momentum now, even though software observability has been around for a while?
Great question! Software observability took off in the 2010s with the rise of cloud-native apps, but data observability is catching up fast. As businesses start treating data as a mission-critical asset—especially with the growth of AI and cloud data platforms like Snowflake—the need for real-time visibility, data reliability, and governance has become urgent. We're in the early innings, but the pace is accelerating quickly.
How does Sifflet’s observability platform help reduce alert fatigue?
We hear this a lot — too many alerts, not enough clarity. At Sifflet, we focus on intelligent alerting by combining metadata, data lineage tracking, and usage patterns to prioritize what really matters. Instead of just flagging that something broke, our platform tells you who’s affected, why it matters, and how to fix it. That means fewer false positives and more actionable insights, helping you cut through the noise and focus on what truly impacts your business.
How does MCP improve root cause analysis in modern data systems?
MCP empowers LLMs to use structured inputs like logs and pipeline metadata, making it easier to trace issues across multiple steps. This structured interaction helps streamline root cause analysis, especially in complex environments where traditional observability tools might fall short. At Sifflet, we’re integrating MCP to enhance how our platform surfaces and explains data incidents.
Why are containers such a big deal in modern data infrastructure?
Containers have become essential in modern data infrastructure because they offer portability, faster deployments, and easier scalability. They simplify the way we manage distributed systems and are a key component in cloud data observability by enabling consistent environments across development, testing, and production.