Lean. Mean. Monitoring %%Machine.%% 

Finally, dynamic monitoring that can keep up with your stack. AI features optimize your coverage and minimize noise, detecting issues before they arise. 

Sifflet dashboard features overview

Customize to Your Heart’s Content

Sifflet offers both a robust library of out of the box monitors and customization capability. Your teams decide what needs monitoring and how to set it up. 

Bye-Bye, Alert Fatigue

Data engineers don’t need more alerts, they need smarter alerts. Our AI learns adaptively as it goes to optimize coverage and minimize noise.  

Hello, Data Reliability 

Data reliability is reinforced with less manual work for technical teams, faster response times, and overall stronger performance. 

IMPLEMENT

Ready-to-Go Monitors 

Quick set up and implementation means quicker results. 

  • See value instantly with pre-defined templates to check data at field and table levels
  • Help your business users and technical teams meet their quality and reliability objectives thanks to ready-to-go monitors
Sifflet dashboard overview
SUPERVISE

Lifecycle Monitoring

End-to-end coverage that never sleeps. 

  • Detect anomalies continuously thanks to ML models 
  • Give your business users ownership over monitors through LLM monitoring setup 
  • Maintain control and accuracy with optional manual setup and user feedback
Sifflet dashboard features overview
MAINTAIN

Scalability & Optimization

Monitoring that’s easy to maintain and coverage that’s just right.

  • Optimize monitoring coverage and minimize noise levels with AI-powered suggestions and supervision
  • Implement programmatic monitoring set up and maintenance with Data Quality as Code (DQaC)
Sifflet dashboard overview

Reinforced %%Reliability%%

Sifflet’s monitoring features reinforce data reliability for all users, so business can deliver.

Data Users

Stop working with corrupt data. Sifflet embeds alerts in your dashboards, so you know exactly when there’s an incident or issue. And you can set up data monitors on your own.

Read more

Data Engineers

No more scaling monitors manually. Sifflet’s ML will optimize coverage for you, so you can be proactive instead of reactive in reducing downtimes.

Read more

Data Leaders

Give your teams the tools they need to reduce monitoring tasks by up to 50% thanks to Sifflet’s monitoring features.

Read more

Data Reliability, %%Reinforced%%

Sifflet’s monitoring features reinforce data reliability for all users, so business can deliver.

Speak with our Experts

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

Why are retailers turning to data observability to manage inventory better?
Retailers are adopting data observability to gain real-time visibility into inventory across all channels, reduce stock inaccuracies, and avoid costly misalignments between supply and demand. With data observability tools, they can proactively detect issues, monitor data quality, and improve operational efficiency across their data pipelines.
What role does data observability play in modern data governance?

AI enhances data observability with advanced anomaly detection, predictive analytics, and automated root cause analysis. This helps teams identify and resolve issues faster while reducing manual effort. Have a look at how Sifflet is leveraging AI for better data observability here

What tools can help me monitor data consistency between old and new environments?
You can use data profiling and anomaly detection tools to compare datasets before and after migration. These features are often built into modern data observability platforms and help you validate that nothing critical was lost or changed during the move.
Can I use Sifflet to detect issues in my dbt models before they impact downstream dashboards?
Absolutely! Sifflet's real-time anomaly detection and full data lineage tracking make it easy to catch issues in your dbt models early. This proactive approach helps prevent broken dashboards and ensures data reliability across your analytics pipeline.
How does Sifflet maintain visual and interaction consistency across its observability platform?
We use a reusable component library based on atomic design principles, along with UX writing guidelines to ensure consistent terminology. This helps users quickly understand telemetry instrumentation, metrics collection, and incident response workflows without needing to relearn interactions across different parts of the platform.
What role did data observability play in Carrefour’s customer engagement strategy?
Data observability was crucial in maintaining high data quality for loyalty programs and marketing campaigns. With real-time metrics and anomaly detection in place, Carrefour was able to improve customer satisfaction and retention through more accurate and timely insights.
What is the Universal Connector that Sifflet introduced in 2024?
The Universal Connector is one of our most exciting 2024 releases. It enables seamless integration across the entire data lifecycle, helping users achieve complete visibility with end-to-end data observability. This means fewer blind spots and a much more holistic view of your data ecosystem.
Why is data observability essential when treating data as a product?
Great question! When you treat data as a product, you're committing to delivering reliable, high-quality data to your consumers. Data observability ensures that issues like data drift, broken pipelines, or unexpected anomalies are caught early, so your data stays trustworthy and valuable. It's the foundation for data reliability and long-term success.