Make Data %%Observability%% Everyone’s Business

Sifflet is an AI-augmented data observability platform built for data teams with business users in mind.

The premier %%virtual summit%% on data reliability, observability, and the future of trustworthy AI.

What Our Customers Say

See Sifflet in action!

Curious about how Sifflet can transform the way your team works with data?

Join our 30-min biweekly demo to see how data leaders, engineers, and platform teams use Sifflet to detect, resolve, and prevent issues—before they impact the business.

See Data Breakthroughs

Sifflet helps you remove the obstacles that stand in the way of superior insights, value, and products from data.

Supercharge Productivity 

Data engineers spend up 50% of their time on mundane reliability tasks and data analysts between 40 to 80% of their time vetting data quality. Sifflet augments your team’s capabilities and supercharges their productivity. 

Uplevel Data Reliability
and Quality 

See next-level improvements to data reliability and quality thanks to tools that make it easier and faster than ever to find and fix your data. 

Empower Ownership, Enable Self-Serve 

Sifflet ensures that your colleagues always know the health status of data, can give input to monitors, and take ownership of their data assets. Collaboration with data teams improves and it’s easier to enable data-mesh and self-serve.

TRACEABLE

Improve productivity and collaboration between engineers and data consumers

For everyone, working with and finding data becomes intuitive with a simple and automated UI, data discovery is simplified with a data catalog, and it is easy to connect with coding workflows.

Sifflet dashboard features overview
Sifflet dashboard data monitoring
Data Lineage

Troubleshoot

When data breaks, take charge. Use Sifflet’s robust tracing capabilities to map your data upstream, downstream and across data layers. You’ll gain insight into your data across the entire lifecycle and see rapid improvements to data quality that benefit the entire company.

Sifllet dashboard data quality monitoring
Data quality monitoring

Monitor

Monitor it all. And more.  Sifflet offers both out of the box and custom monitoring capability, so your teams can keep an eye on assets you know need observation…and even those you don’t.  Our AI optimizes your coverage and minimizes noise, getting smarter as it goes.  Your data’s reliability is reinforced, helping to grow confidence in your numbers. Now that’s performance. 

Built for %%Everyone%%

Sifflet helps you remove the obstacles that stand in the way of superior insights, value, and products from data. 

Data Leaders

Drive innovation and enable AI. With Sifflet, you can transform your data strategy, governance, and team productivity while ensuring efficient and scalable data infrastructure.

Read more

Data Engineers

Boost your productivity. Sifflet gives you end-to-end visibility into your architecture, assets, and pipelines. Advanced monitoring ensures you get the right alerts and lineage helps you get to resolution faster.

Read more

Data Users

No more data discrepancies. Sifflet ensures the highest levels of data quality. Your teams can make the best possible decisions for your company, unlocking new levels of performance that help you compete in the age of AI.

Read more

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What does it mean to treat data as a product?
Treating data as a product means managing data with the same care and strategy as a traditional product. It involves packaging, maintaining, and delivering high-quality data that serves a specific purpose or audience. This approach improves data reliability and makes it easier to monetize or use for strategic decision-making.
How does Sentinel help reduce alert fatigue in modern data environments?
Sentinel intelligently analyzes metadata like data lineage and schema changes to recommend what really needs monitoring. By focusing on high-impact areas, it cuts down on noise and helps teams manage alert fatigue while optimizing monitoring costs.
How does the rise of unstructured data impact data quality monitoring?
Unstructured data, like text, images, and audio, is growing rapidly due to AI adoption and IoT expansion. This makes data quality monitoring more complex but also more essential. Tools that can profile and validate unstructured data are key to maintaining high-quality datasets for both traditional and AI-driven applications.
How does Sifflet support local development workflows for data teams?
Sifflet is integrating deeply with local development tools like dbt and the Sifflet CLI. Soon, you'll be able to define monitors directly in dbt YAML files and run them locally, enabling real-time metrics checks and anomaly detection before deployment, all from your development environment.
How does Flow Stopper improve data reliability for engineering teams?
By integrating real-time data quality monitoring directly into your orchestration layer, Flow Stopper gives Data Engineers the ability to stop the flow when something looks off. This means fewer broken pipelines, better SLA compliance, and more time spent on innovation instead of firefighting.
What is data lineage and why does it matter for modern data teams?
Data lineage is the process of mapping the journey of data from its origin to its final destination, including all the transformations it undergoes. It's essential for data pipeline monitoring and root cause analysis because it helps teams quickly identify where data issues originate, saving time and reducing stress under pressure.
How does Sifflet help identify performance bottlenecks in dbt models?
Sifflet's dbt runs tab offers deep insights into model execution, cost, and runtime, making it easy to spot inefficiencies. You can also use historical performance data to set up custom dashboards and proactive monitors. This helps with capacity planning and ensures your data pipelines stay optimized and cost-effective.
How does Sifflet support AI readiness within enterprises?
Sifflet reinforces AI-powered capabilities through features like data freshness checks, data profiling, and anomaly scoring. These tools ensure your data is accurate and trustworthy, which is crucial for training reliable machine learning models and enabling predictive analytics monitoring.

More data. %%Less Chaos.%%

If you want a smoother running stack,
let’s talk about what Sifflet can do for you. 

Contact Us