Make Data %%Observability%% Everyone’s Business

Sifflet is an AI-augmented data observability platform built for data teams with business users in mind.

What Our Customers Say

See Sifflet in action!

Curious about how Sifflet can transform the way your team works with data?

Join our 30-min biweekly demo to see how data leaders, engineers, and platform teams use Sifflet to detect, resolve, and prevent issues—before they impact the business.

See Data Breakthroughs

Sifflet helps you remove the obstacles that stand in the way of superior insights, value, and products from data.

Customize to Your Heart’s Content

Sifflet offers both a robust library of out of the box monitors and customization capability. Your teams decide what needs monitoring and how to set it up.

Customize to Your Heart’s Content

Sifflet offers both a robust library of out of the box monitors and customization capability. Your teams decide what needs monitoring and how to set it up.

Customize to Your Heart’s Content

Sifflet offers both a robust library of out of the box monitors and customization capability. Your teams decide what needs monitoring and how to set it up.

TACABLE

Improve productivity and collaboration between engineers and data consumers

For everyone, working with and finding data becomes intuitive with a simple and automated UI, data discovery is simplified with a data catalog, and it is easy to connect with coding workflows.

Sifflet dashboard features overview
Sifflet dashboard data monitoring
Data Lineage

Troubleshoot

When data breaks, take charge. Use Sifflet’s robust tracing capabilities to map your data upstream, downstream and across data layers. You’ll gain insight into your data across the entire lifecycle and see rapid improvements to data quality that benefit the entire company.

Sifllet dashboard data quality monitoring
Data quality monitoring

Monitor

When data breaks, take charge. Use Sifflet’s robust tracing capabilities to map your data upstream, downstream and across data layers. You’ll gain insight into your data across the entire lifecycle and see rapid improvements to data quality that benefit the entire company.

Built for %%Everyone%%

Sifflet helps you remove the obstacles that stand in the way of superior insights, value, and products from data. 

Data Leaders

Drive innovation and enable AI. With Sifflet, you can transform your data strategy, governance, and team productivity while ensuring efficient and scalable data infrastructure.

Read more

Data Engineers

Boost your productivity. Sifflet gives you end-to-end visibility into your architecture, assets, and pipelines. Advanced monitoring ensures you get the right alerts and lineage helps you get to resolution faster.

Read more

Data Users

No more data discrepancies. Sifflet ensures the highest levels of data quality. Your teams can make the best possible decisions for your company, unlocking new levels of performance that help you compete in the age of AI.

Read more

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

Can I monitor the health of my Firebolt tables in real time with Sifflet?
Absolutely! With Sifflet's observability platform, you can view the health status of your Firebolt tables in real time. This allows for proactive data pipeline monitoring and helps ensure SLA compliance across your analytics workflows.
What is metrics observability and why does it matter for business users?
Metrics observability helps business users trust and understand the KPIs they rely on by making it easy to trace how metrics are defined, calculated, and connected to other data assets. With Sifflet’s observability platform, teams can ensure their business metrics are accurate, reliable, and aligned across departments.
What are some of the latest technologies integrated into Sifflet's observability tools?
We've been exploring and integrating a variety of cutting-edge technologies, including dynamic thresholding for anomaly detection, data profiling tools, and telemetry instrumentation. These tools help enhance our pipeline health dashboard and improve transparency in data pipelines.
What kind of monitoring should I set up after migrating to the cloud?
After migration, continuous data quality monitoring is a must. Set up real-time alerts for data freshness checks, schema changes, and ingestion latency. These observability tools help you catch issues early and keep your data pipelines running smoothly.
How does SQL Table Tracer handle complex SQL features like CTEs and subqueries?
SQL Table Tracer uses a Monoid-based design to handle complex SQL structures like Common Table Expressions (CTEs) and subqueries. This approach allows it to incrementally and safely compose lineage information, ensuring accurate root cause analysis and data drift detection.
How can I track the success of my data team?
Define clear success KPIs that support ROI, such as improvements in SLA compliance, reduction in ingestion latency, or increased data reliability. Using data observability dashboards and pipeline health metrics can help you monitor progress and communicate value to stakeholders. It's also important to set expectations early and maintain strong internal communication.
What’s a real-world example of Dailymotion using real-time metrics to drive business value?
One standout example is their ad inventory forecasting tool. By embedding real-time metrics into internal tools, sales teams can plan campaigns more precisely and avoid last-minute scrambles. It’s a great case of using data to improve both accuracy and efficiency.
How do logs contribute to observability in data pipelines?
Logs capture interactions between data and external systems or users, offering valuable insights into data transformations and access patterns. They are essential for detecting anomalies, understanding data drift, and improving incident response in both batch and streaming data monitoring environments.

More data. %%Less Chaos.%%

If you want a smoother running stack,
let’s talk about what Sifflet can do for you. 

Contact Us