BUILT-IN SECURITY

Simply Secure

Sifflet makes no compromises when it comes to ensuring your security, risk mitigation, and compliance. 

Sifflet dashboard features overview

Least Privilege Policies

Sifflet helps you manage who can access what data. It features RBAC principles to grant or restrict access based on a user’s role in the organization, rather than managing individual permissions. 

A No Data Storage Approach

Our approach eliminates persistent data storage, with transient data handling and ephemeral computing principles. 

State of the Art Isolation

Sifflet uses single tenancy architecture, so each and every client benefits from a dedicated and isolated instance of our tooling, infrastructure, and associated resources.

ENSURE

Product Security 

Sifflet gives you peace of mind with tools to keep access to your environment protected.

  • SaaS or self-hosted deployment
  • Cross-IdP SSO support
  • RBAC
Sifflet dashboard features overview
ISOLATE

Platform Security 

Security at the platform level to keep each and every client safe.

  • Single tenancy architecture for state of the art isolation
  • No data alteration and least privilege policy
  • No data storage approach
Sifflet dashboard features overview
PROTECT

Compliance Certifications

Your data’s sensitive. Sifflet is certified compliant across a range of standards.

  • SOC 2
  • ISO 27001
  • GDPR
  • HIPAA
Compliance certifications badge
TEAMS

Strong Protection

Built for Everyone

Benefit from peace of mind that your sensitive data is safe and your business mitigates risk by remaining compliant.

Data Users

Enhance customer trust with tools that secure data and help your business align with regulatory and compliance requirements.

Data Engineers

Keep specific data pipelines and storage systems confidential and protect critical data assets from manipulation.

Data Leaders

Avoid legal issues, financial penalties and reputational damage associated with data mishandling, or unauthorized data access and breaches.

Need strong data protection?

Benefit from peace of mind that your sensitive data is safe and your business mitigates risk by remaining compliant.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

What are the main challenges of implementing Data as a Product?
Some key challenges include ensuring data privacy and security, maintaining strong data governance, and investing in data optimization. These areas require robust monitoring and compliance tools. Leveraging an observability platform can help address these issues by providing visibility into data lineage, quality, and pipeline performance.
What’s Sifflet’s vision for data observability in 2025?
Our 2025 vision is all about pushing the boundaries of cloud data observability. We're focusing on deeper automation, AI-driven insights, and expanding our observability platform to cover everything from real-time metrics to predictive analytics monitoring. It's about making data operations more resilient, transparent, and scalable.
How has AI changed the way companies think about data quality monitoring?
AI has definitely raised the stakes. As Salma shared on the Joe Reis Show, executives are being asked to 'do AI,' but many still struggle with broken pipelines. That’s why data quality monitoring and robust data observability are now seen as prerequisites for scaling AI initiatives effectively.
Why is data observability essential for AI success?
AI depends on trustworthy data, and that’s exactly where data observability comes in. With features like data drift detection, root cause analysis, and real-time alerts, observability tools ensure that your AI systems are built on a solid foundation. No trust, no AI—that’s why dependable data is the quiet engine behind every successful AI strategy.
How does Sifflet use MCP to enhance observability in distributed systems?
At Sifflet, we’re leveraging MCP to build agents that can observe, decide, and act across distributed systems. By injecting telemetry data, user context, and pipeline metadata as structured resources, our agents can navigate complex environments and improve distributed systems observability in a scalable and modular way.
How can I ensure SLA compliance during data integration?
To meet SLA compliance, it's crucial to monitor ingestion latency, data freshness checks, and throughput metrics. Implementing data observability dashboards can help you track these in real time and act quickly when something goes off track. Sifflet’s observability platform helps teams stay ahead of issues and meet their data SLAs confidently.
Why is semantic quality monitoring important for AI applications?
Semantic quality monitoring ensures that the data feeding into your AI models is contextually accurate and production-ready. At Sifflet, we're making this process seamless with tools that check for data drift, validate schema, and maintain high data quality without manual intervention.
What’s a real-world example of Dailymotion using real-time metrics to drive business value?
One standout example is their ad inventory forecasting tool. By embedding real-time metrics into internal tools, sales teams can plan campaigns more precisely and avoid last-minute scrambles. It’s a great case of using data to improve both accuracy and efficiency.
Still have questions?