%%Simply%% Secure

Sifflet makes no compromises when it comes to ensuring your security, risk mitigation, and compliance. 

Sifflet dashboard features overview

Least Privilege Policies

Sifflet helps you manage who can access what data. It features RBAC principles to grant or restrict access based on a user’s role in the organization, rather than managing individual permissions. 

A No Data Storage Approach

Our approach eliminates persistent data storage, with transient data handling and ephemeral computing principles. 

State of the Art Isolation

Sifflet uses single tenancy architecture, so each and every client benefits from a dedicated and isolated instance of our tooling, infrastructure, and associated resources.

ENSURE

Product Security 

Sifflet gives you peace of mind with tools to keep access to your environment protected.

  • SaaS or self-hosted deployment
  • Cross-IdP SSO support
  • RBAC
Sifflet dashboard features overview
ISOLATE

Platform Security 

Security at the platform level to keep each and every client safe.

  • Single tenancy architecture for state of the art isolation
  • No data alteration and least privilege policy
  • No data storage approach
Sifflet dashboard features overview
PROTECT

Compliance Certifications

Your data’s sensitive. Sifflet is certified compliant across a range of standards.

  • SOC 2
  • ISO 27001
  • GDPR
  • HIPAA
Compliance certifications badge

Reinforced %%Reliability%%

Sifflet’s monitoring features reinforce data reliability for all users, so business can deliver.

Data Users

Enhance customer trust with tools that secure data and help your business align with regulatory and compliance requirements.

Read more

Data Engineers

Keep specific data pipelines and storage systems confidential and protect critical data assets from manipulation.

Read more

Data Leaders

Avoid legal issues, financial penalties and reputational damage associated with data mishandling, or unauthorized data access and breaches.

Read more

Need %%strong%% data protection?

Benefit from peace of mind that your sensitive data is safe and your business mitigates risk by remaining compliant.

Talk to our Experts

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

What role does machine learning play in data quality monitoring at Sifflet?
Machine learning is at the heart of our data quality monitoring efforts. We've developed models that can detect anomalies, data drift, and schema changes across pipelines. This allows teams to proactively address issues before they impact downstream processes or SLA compliance.
How can data lineage tracking help with root cause analysis?
Data lineage tracking shows how data flows through your systems and how different assets depend on each other. This is incredibly helpful for root cause analysis because it lets you trace issues back to their source quickly. With Sifflet’s lineage capabilities, you can understand both upstream and downstream impacts of a data incident, making it easier to resolve problems and prevent future ones.
How does Sifflet make setting up data quality monitoring easier?
Great question! With the launch of Data-Quality-as-Code v2, Sifflet has made it much easier to create and manage monitors at scale. Whether you prefer working programmatically or through the UI, our platform now offers smoother workflows and standardized threshold settings for more intuitive data quality monitoring.
How can organizations balance the need for data accuracy with the cost of achieving it?
That's a smart consideration! While 100% accuracy sounds ideal, it's often costly and unrealistic. A better approach is to define acceptable thresholds through data validation rules and data profiling. By using observability platforms that support threshold-based alerts and dynamic thresholding, teams can focus on what matters most without over-investing in perfection.
What role does anomaly detection play in modern data contracts?
Anomaly detection helps identify unexpected changes in data that might signal contract violations or semantic drift. By integrating predictive analytics monitoring and dynamic thresholding into your observability platform, you can catch issues before they break dashboards or compromise AI models. It’s a core feature of a resilient, intelligent metadata layer.
What’s the difference between a data catalog and a storage platform in observability?
A great distinction! Storage platforms hold your actual data, while a data catalog helps you understand what that data means. Sifflet connects both, so when we detect an anomaly, the catalog tells you what business process is affected and who should be notified. It’s how we turn raw telemetry into actionable insights for better incident response automation and SLA compliance.
How does field-level lineage improve root cause analysis in observability platforms like Sifflet?
Field-level lineage allows users to trace issues down to individual columns across tables, making it easier to pinpoint where a problem originated. This level of detail enhances root cause analysis and impact assessment, helping teams resolve incidents quickly and maintain trust in their data.
How does Sifflet maintain visual and interaction consistency across its observability platform?
We use a reusable component library based on atomic design principles, along with UX writing guidelines to ensure consistent terminology. This helps users quickly understand telemetry instrumentation, metrics collection, and incident response workflows without needing to relearn interactions across different parts of the platform.