COMPARISON

Built for Scale: How Sifflet outperforms Metaplane

Sifflet offers a more complete and scalable approach to data observability than Metaplane, built for the needs of modern enterprises—not just lean, dbt-centric teams. With deeper lineage, smarter automation, and broader team support, Sifflet helps organizations turn data trust into business impact.

THE BIG PICTURE

Augmented data quality for analytics and AI

Metaplane covers the basics of technical data quality: freshness, volume, and anomaly detection, mainly for dbt-centric teams. Sifflet goes further, layering rich metadata, lineage, and cataloging to give full visibility and faster resolution across complex data environments.

Built for scale, Sifflet supports both technical and business users with AI-powered automation, broad integrations, and an adaptive UX. It’s observability that drives trust, governance, and business value, not just detection.

Don't Solve Half the Problem.

If you want to tackle data quality just from a technical perspective, Sifflet isn’t for you. But if you want to reach augmented data quality for analytics and AI that truly brings business value to downstream users, Sifflet is the right choice for today… and tomorrow.

Metaplane
Monitoring Coverage

OOTB monitors + SQL logic + NLP monitor wizard; scales across complex environments

Freshness, volume, null checks; dbt-aware

Root Cause Analysis (RCA)

Automated RCA with health-aware lineage and pipeline insights

Manual triage with limited lineage context

Lineage

End-to-end lineage from ingestion to BI, with health overlays

dbt metadata or warehouse schema-based; partial

Catalog & Metadata

Full catalog with glossary, usage tracking, and business context

No built-in catalog; limited metadata visualization

Alerting & Surfacing

Alerts surface across tools—including BI dashboards via Chrome extension

Slack and email alerts

User Experience & Scalability

Adaptive UX for both technical and business users; built for large, decentralized orgs

Simple UI, CLI, fast setup; built for dbt-native, lean teams

Integrations

Wide coverage across orchestration, warehouse, modeling, and BI tools

Strong in dbt and warehouse tools; limited elsewhere

There's no one size fits all.

When it comes to data observability platforms, there's no one size fits all.
Chat with one of our experts today to learn more about Sifflet and if it's the right option for you.

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

What are some common data quality issues that can be prevented with the right tools?
Common issues like schema changes, missing values, and data drift can all be caught early with effective data quality monitoring. Tools that offer features like threshold-based alerts, data freshness checks, and pipeline health dashboards make it easier to prevent these problems before they affect downstream systems.
Who should be responsible for data quality in an organization?
That's a great topic! While there's no one-size-fits-all answer, the best data quality programs are collaborative. Everyone from data engineers to business users should play a role. Some organizations adopt data contracts or a Data Mesh approach, while others use centralized observability tools to enforce data validation rules and ensure SLA compliance.
Why is declarative lineage important for data observability?
Declarative lineage is a game changer because it provides a clear, structured view of how data flows through your systems. This visibility is key for effective data pipeline monitoring, root cause analysis, and data governance. With Sifflet’s approach, you can track upstream and downstream dependencies and ensure your data is reliable and well-managed.
How does data observability improve the value of a data catalog?
Data observability enhances a data catalog by adding continuous monitoring, data lineage tracking, and real-time alerts. This means organizations can not only find their data but also trust its accuracy, freshness, and consistency. By integrating observability tools, a catalog becomes part of a dynamic system that supports SLA compliance and proactive data governance.
How does data observability support data governance and compliance?
If you're in a regulated industry or handling sensitive data, observability tools can help you stay compliant. They offer features like audit logging, data freshness checks, and schema validation, which support strong data governance and help ensure SLA compliance.
Why is data observability important in a modern data stack?
Data observability is crucial because it ensures your data is reliable, trustworthy, and ready for decision-making. It sits at the top of the modern data stack and helps teams detect issues like data drift, schema changes, or freshness problems before they impact downstream analytics. A strong observability platform like Sifflet gives you peace of mind and helps maintain data quality across all layers.
Why is data observability important for large organizations?
Data observability helps organizations ensure data quality, monitor pipelines in real time, and build trust in their data. At Big Data LDN, we’ll share how companies like Penguin Random House use observability tools to improve data governance and drive better decisions.
Why did jobvalley choose Sifflet over other data catalog vendors?
After evaluating several data catalog vendors, jobvalley selected Sifflet because of its comprehensive features that addressed both data discovery and data quality monitoring. The platform’s ability to streamline onboarding and support real-time metrics made it the ideal choice for their growing data team.
Still have questions?