A first look at Sifflet, the data observability platform for data producers and users

In this simple demo, you'll find out how to easily spot an incident, solve it and save your business sanity!

Show Your Stack Who’s Boss

Unified data observability that packs a three-in-one punch. From data discovery to integrated monitoring and troubleshooting capabilities, you’ll be the one in charge.

Seamlessly connect with all your favorite data tools to centralize insights and unlock the full potential of your data ecosystem.
 g2 labels
Join the ranks of happy customers who’ve made Sifflet a G2 leader, trusted for its innovation and impact
sifflet platform graph
Stay ahead of issues with real-time alerts that keep you informed and in control of your data health
Sifflet platform tags
Organize, discover, and leverage your data assets effortlessly with a smart, searchable catalog built for modern teams.
Sifflet platform code extract
Harness the power of AI-driven suggestions to improve efficiency, accuracy, and decision-making across your workflows.
sifflet work team
Empower your team with tailored access, enabling secure collaboration that drives smarter decisions.
What Our Customers Say

See Sifflet in action!

Curious about how Sifflet can transform the way your team works with data?
Join our 30-min biweekly demo to see how data leaders, engineers, and platform teams use Sifflet to detect, resolve, and prevent issues—before they impact the business.

Register for our biweekly demo now!
ACHIEVE

See Data Breakthroughs

Sifflet helps you remove the obstacles that stand in the way of superior insights, value, and products from data. 

Supercharge Productivity 

Data engineers spend up 50% of their time on mundane reliability tasks and data analysts between 40 to 80% of their time vetting data quality. Sifflet augments your team’s capabilities and supercharges their productivity. 

Uplevel Data Reliability
and Quality 

See next-level improvements to data reliability and quality thanks to tools that make it easier and faster than ever to find and fix your data. 

Empower Ownership, Enable Self-Serve 

Sifflet ensures that your colleagues always know the health status of data, can give input to monitors, and take ownership of their data assets. Collaboration with data teams improves and it’s easier to enable data-mesh and self-serve.

TEAMS

Built for

Built for Everyone

Everyone

Data Leaders

Data Engineers

Data Users

Everyone

Sifflet allows everyone to own and build confidence in data thanks to features that make it easy to access, understand and contribute to data reliability and quality.

Data Leaders

Drive innovation and enable AI. With Sifflet, you can transform your data strategy, governance, and team productivity while ensuring efficient and scalable data infrastructure.

Data Engineers

Boost your productivity. Sifflet gives you end-to-end visibility into your architecture, assets, and pipelines. Advanced monitoring ensures you get the right alerts and lineage helps you get to resolution faster.

Data Users

No more data discrepancies. Sifflet ensures the highest levels of data quality. Your teams can make the best possible decisions for your company, unlocking new levels of performance that help you compete in the age of AI.

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data
"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

What types of data lineage should I know about?
There are four main types: technical lineage, business lineage, cross-system lineage, and governance lineage. Each serves a different purpose, from debugging pipelines to supporting compliance. Tools like Sifflet offer field-level lineage for deeper insights, helping teams across engineering, analytics, and compliance understand and trust their data.
Why is data reliability more important than ever?
With more teams depending on data for everyday decisions, data reliability has become a top priority. It’s not just about infrastructure uptime anymore, but also about ensuring the data itself is accurate, fresh, and trustworthy. Tools for data quality monitoring and root cause analysis help teams catch issues early and maintain confidence in their analytics.
What are some engineering challenges around the 'right to be forgotten' under GDPR?
The 'right to be forgotten' introduces several technical hurdles. For example, deleting user data across multiple systems, backups, and caches can be tricky. That's where data lineage tracking and pipeline orchestration visibility come in handy. They help you understand dependencies and ensure deletions are complete and safe without breaking downstream processes.
What is data lineage and why does it matter for modern data teams?
Data lineage is the process of mapping the journey of data from its origin to its final destination, including all the transformations it undergoes. It's essential for data pipeline monitoring and root cause analysis because it helps teams quickly identify where data issues originate, saving time and reducing stress under pressure.
Why is data lineage so critical in a data observability strategy?
Data lineage is the backbone of any strong data observability strategy. It helps teams trace data issues to their source by showing how data flows from ingestion to dashboards and models. With lineage, you can assess the impact of changes, improve collaboration across teams, and resolve anomalies faster. It's especially powerful when combined with anomaly detection and real-time metrics for full visibility across your pipelines.
What kinds of metrics can retailers track with advanced observability tools?
Retailers can track a wide range of metrics such as inventory health, stock obsolescence risks, carrying costs, and dynamic safety stock levels. These observability dashboards offer time-series analysis and predictive insights that support better decision-making and improve overall data reliability.
Will Sifflet cover any upcoming trends in data observability?
For sure! Our CEO, Salma Bakouk, will be speaking about the top data trends to watch in 2025, including how GenAI and advanced anomaly detection are shaping the future of observability platforms. You’ll walk away with actionable insights for your data strategy.
What makes Sifflet’s approach to anomaly detection more reliable than traditional methods?
Sifflet uses intelligent, ML-driven anomaly detection that evolves with your data. Instead of relying on static rules, it adjusts sensitivity and parameters in real time, improving data reliability and helping teams focus on real issues without being overwhelmed by alert fatigue.
Still have questions?

More Data. Less Chaos.

If you want a smoother running stack,
let’s talk about what Sifflet can do for you.