Book a Demo

Request a demo

Get ahead of business issues before they become business catastrophes.

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Show Your Stack Who’s Boss

Unified data observability that packs a three-in-one punch. From data discovery to integrated monitoring and troubleshooting capabilities, you’ll be the one in charge.

Seamlessly connect with all your favorite data tools to centralize insights and unlock the full potential of your data ecosystem.
 g2 labels
Join the ranks of happy customers who’ve made Sifflet a G2 leader, trusted for its innovation and impact
sifflet platform graph
Stay ahead of issues with real-time alerts that keep you informed and in control of your data health
Sifflet platform tags
Organize, discover, and leverage your data assets effortlessly with a smart, searchable catalog built for modern teams.
Sifflet platform code extract
Harness the power of AI-driven suggestions to improve efficiency, accuracy, and decision-making across your workflows.
sifflet work team
Empower your team with tailored access, enabling secure collaboration that drives smarter decisions.

Frequently asked questions

How does Sifflet support SLA compliance and proactive monitoring?
With real-time metrics and intelligent alerting, Sifflet helps ensure SLA compliance by detecting issues early and offering root cause analysis. Its proactive monitoring features, like dynamic thresholding and auto-remediation suggestions, keep your data pipelines healthy and responsive.
What is reverse ETL and why is it important in the modern data stack?
Reverse ETL is the process of moving data from your data warehouse into external systems like CRMs or marketing platforms. It plays a crucial role in the modern data stack by enabling operational analytics, allowing business teams to act on real-time metrics and make data-driven decisions directly within their everyday tools.
What role does data lineage tracking play in volume monitoring?
Data lineage tracking is essential for root cause analysis when volume anomalies occur. It helps you trace where data came from and how it's been transformed, so if a volume drop happens, you can quickly identify whether it was caused by a failed API, upstream filter, or schema change. This context is key for effective data pipeline monitoring.
What kind of real-time alerts can I expect with Sifflet and dbt together?
With Sifflet and dbt working together, you get real-time alerts delivered straight to your favorite tools like Slack, Microsoft Teams, or email. Whether a dbt test fails or a data anomaly is detected, your team will be notified immediately, helping you respond quickly and maintain data quality monitoring at all times.
Why is data categorization important for data governance and compliance?
Effective data categorization is essential for data governance and compliance because it helps identify sensitive data like PII, ensuring the correct protection policies are applied. With Sifflet’s classification tags, governance teams can easily locate and safeguard sensitive information, supporting GDPR data monitoring and overall data security compliance.
How does Sifflet’s observability platform help reduce alert fatigue?
We hear this a lot — too many alerts, not enough clarity. At Sifflet, we focus on intelligent alerting by combining metadata, data lineage tracking, and usage patterns to prioritize what really matters. Instead of just flagging that something broke, our platform tells you who’s affected, why it matters, and how to fix it. That means fewer false positives and more actionable insights, helping you cut through the noise and focus on what truly impacts your business.
Why does query formatting matter in modern data operations?
Well-formatted queries are easier to debug, share, and maintain. This aligns with DataOps best practices and supports transparency in data pipelines, which is essential for consistent SLA compliance and proactive monitoring.
What are some best practices for ensuring data quality during transformation?
To ensure high data quality during transformation, start with strong data profiling and cleaning steps, then use mapping and validation rules to align with business logic. Incorporating data lineage tracking and anomaly detection also helps maintain integrity. Observability tools like Sifflet make it easier to enforce these practices and continuously monitor for data drift or schema changes that could affect your pipeline.
Still have questions?

Data Observability is Now

Make Data Observability Everyone’s Business Now