Book a Demo

Request a demo

Get ahead of business issues before they become business catastrophes.

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Show Your Stack Who’s Boss

Unified data observability that packs a three-in-one punch. From data discovery to integrated monitoring and troubleshooting capabilities, you’ll be the one in charge.

Seamlessly connect with all your favorite data tools to centralize insights and unlock the full potential of your data ecosystem.
 g2 labels
Join the ranks of happy customers who’ve made Sifflet a G2 leader, trusted for its innovation and impact
sifflet platform graph
Stay ahead of issues with real-time alerts that keep you informed and in control of your data health
Sifflet platform tags
Organize, discover, and leverage your data assets effortlessly with a smart, searchable catalog built for modern teams.
Sifflet platform code extract
Harness the power of AI-driven suggestions to improve efficiency, accuracy, and decision-making across your workflows.
sifflet work team
Empower your team with tailored access, enabling secure collaboration that drives smarter decisions.

Frequently asked questions

Will Sifflet cover any upcoming trends in data observability?
For sure! Our CEO, Salma Bakouk, will be speaking about the top data trends to watch in 2025, including how GenAI and advanced anomaly detection are shaping the future of observability platforms. You’ll walk away with actionable insights for your data strategy.
How does the updated lineage graph help with root cause analysis?
By merging dbt model nodes with dataset nodes, our streamlined lineage graph removes clutter and highlights what really matters. This cleaner view enhances root cause analysis by letting you quickly trace issues back to their source with fewer distractions and more context.
What should I look for in a modern data discovery tool?
Look for features like self-service discovery, automated metadata collection, and end-to-end data lineage. Scalability is key too, especially as your data grows. Tools like Sifflet also integrate data observability, so you can monitor data quality and pipeline health while exploring your data assets.
Why is investing in data observability important for business leaders?
Great question! Investing in data observability helps organizations proactively monitor the health of their data, reduce the risk of bad data incidents, and ensure data quality across pipelines. It also supports better decision-making, improves SLA compliance, and helps maintain trust in analytics. Ultimately, it’s a strategic move that protects your business from costly mistakes and missed opportunities.
Can I learn about real-world results from Sifflet customers at the event?
Yes, definitely! Companies like Saint-Gobain will be sharing how they’ve used Sifflet for data observability, data lineage tracking, and SLA compliance. It’s a great chance to hear how others are solving real data challenges with our platform.
What makes debugging data pipelines so time-consuming, and how can observability help?
Debugging complex pipelines without the right tools can feel like finding a needle in a haystack. A data observability platform simplifies root cause analysis by providing detailed telemetry and pipeline health dashboards, so you can quickly identify where things went wrong and fix them faster.
Is this feature scalable for large datasets and multiple data assets?
Yes, it is! With Sifflet’s auto-coverage and observability tools, you can monitor distribution deviation at scale with just a few clicks. Whether you're working with batch data observability or streaming data monitoring, Sifflet has you covered with automated, scalable insights.
Can reverse ETL help with data quality monitoring?
Absolutely. By integrating reverse ETL with a strong observability platform like Sifflet, you can implement data quality monitoring throughout the pipeline. This includes real-time alerts for sync issues, data freshness checks, and anomaly detection to ensure your operational data remains trustworthy and accurate.
Still have questions?

Data Observability is Now

Make Data Observability Everyone’s Business Now