Book a Demo
Request a demo
Get ahead of business issues before they become business catastrophes.
















Show Your Stack Who’s Boss
Unified data observability that packs a three-in-one punch. From data discovery to integrated monitoring and troubleshooting capabilities, you’ll be the one in charge.
Seamlessly connect with all your favorite data tools to centralize insights and unlock the full potential of your data ecosystem.

Join the ranks of happy customers who’ve made Sifflet a G2 leader, trusted for its innovation and impact
Stay ahead of issues with real-time alerts that keep you informed and in control of your data health
Organize, discover, and leverage your data assets effortlessly with a smart, searchable catalog built for modern teams.
Harness the power of AI-driven suggestions to improve efficiency, accuracy, and decision-making across your workflows.

Empower your team with tailored access, enabling secure collaboration that drives smarter decisions.
Frequently asked questions
What kind of visibility does Sifflet provide for Airflow DAGs?
Sifflet offers a clear view of DAG run statuses and their potential impact on the rest of your data pipeline. Combined with data lineage tracking, it gives you full transparency, making root cause analysis and incident response much easier.
How do I choose the right organizational structure for my data team?
It depends on your company's size, data maturity, and use cases. Some teams report to engineering or product, while others operate as independent entities reporting to the CEO or CFO. The key is to avoid silos and unclear ownership. A centralized or hybrid structure often works well to promote collaboration and maintain transparency in data pipelines.
How does Kubernetes help with container orchestration?
Kubernetes makes it easier to manage large-scale containerized applications by automating deployment, scaling, and operations. It's a powerful observability tool that supports real-time metrics collection, resource utilization tracking, and pipeline orchestration visibility, helping teams stay on top of their data pipelines.
How does Sifflet use AI to improve data classification?
Sifflet leverages machine learning to provide AI Suggestions for classification tags, helping teams automatically identify and label key data characteristics like PII or low cardinality. This not only streamlines data management but also enhances data quality monitoring by reducing manual effort and human error.
What makes Sifflet a more inclusive data observability platform compared to Monte Carlo?
Sifflet is designed for both technical and non-technical users, offering no-code monitors, natural-language setup, and cross-persona alerts. This means analysts, data scientists, and executives can all engage with data quality monitoring without needing engineering support, making it a truly inclusive observability platform.
What role does data lineage tracking play in data governance?
Data lineage tracking is essential for understanding where data comes from, how it changes, and where it goes. It supports compliance efforts, improves root cause analysis, and reduces confusion in cross-functional teams. Combined with data governance, lineage tracking ensures transparency in data pipelines and builds trust in analytics and reporting.
What is the Model Context Protocol (MCP), and why is it important for data observability?
The Model Context Protocol (MCP) is a new interface standard developed by Anthropic that allows large language models (LLMs) to interact with tools, retain memory, and access external context. At Sifflet, we're excited about MCP because it enables more intelligent agents that can help with data observability by diagnosing issues, triggering remediation tools, and maintaining context across long-running investigations.
What role does reverse ETL play in operational analytics?
Reverse ETL bridges the gap between data teams and business users by moving data from the warehouse into tools like CRMs and marketing platforms. This enables operational analytics, where business teams can act on real-time data. To ensure this process runs smoothly, data observability dashboards can monitor for pipeline errors and enforce data validation rules.
Data Observability is Now
Make Data Observability Everyone’s Business Now







-p-500.png)
