Book a Demo
Request a demo
Get ahead of business issues before they become business catastrophes.









Show Your Stack Who’s Boss
Unified data observability that packs a three-in-one punch. From data discovery to integrated monitoring and troubleshooting capabilities, you’ll be the one in charge.
Seamlessly connect with all your favorite data tools to centralize insights and unlock the full potential of your data ecosystem.

Join the ranks of happy customers who’ve made Sifflet a G2 leader, trusted for its innovation and impact
Stay ahead of issues with real-time alerts that keep you informed and in control of your data health
Organize, discover, and leverage your data assets effortlessly with a smart, searchable catalog built for modern teams.
Harness the power of AI-driven suggestions to improve efficiency, accuracy, and decision-making across your workflows.

Empower your team with tailored access, enabling secure collaboration that drives smarter decisions.
Frequently asked questions
Why is data observability essential when treating data as a product?
Great question! When you treat data as a product, you're committing to delivering reliable, high-quality data to your consumers. Data observability ensures that issues like data drift, broken pipelines, or unexpected anomalies are caught early, so your data stays trustworthy and valuable. It's the foundation for data reliability and long-term success.
What is data distribution deviation and why should I care about it?
Data distribution deviation happens when the distribution of your data changes over time, either gradually or suddenly. This can lead to serious issues like data drift, broken queries, and misleading business metrics. With Sifflet's data observability platform, you can automatically monitor for these deviations and catch problems before they impact your decisions.
How do the four pillars of data observability help improve data quality?
The four pillars—metrics, metadata, data lineage, and logs—work together to give teams full visibility into their data systems. Metrics help with data profiling and freshness checks, metadata enhances data governance, lineage enables root cause analysis, and logs provide insights into data interactions. Together, they support proactive data quality monitoring.
How does data observability differ from traditional data quality monitoring?
Great question! While data quality monitoring focuses on alerting teams when data deviates from expected parameters, data observability goes further by providing context through data lineage tracking, real-time metrics, and root cause analysis. This holistic view helps teams not only detect issues but also understand and fix them faster, making it a more proactive approach.
How can organizations improve data governance with modern observability tools?
Modern observability tools offer powerful features like data lineage tracking, audit logging, and schema registry integration. These capabilities help organizations improve data governance by providing transparency, enforcing data contracts, and ensuring compliance with evolving regulations like GDPR.
Why should data teams care about data lineage tracking?
Data lineage tracking is a game-changer for data teams. It helps you understand how data flows through your systems and what downstream processes depend on it. When something breaks, lineage reveals the blast radius—so instead of just knowing a table is late, you’ll know it affects marketing campaigns or executive reports. It’s a critical part of any observability platform that wants to move from reactive to proactive.
How did Adaptavist reduce data downtime with Sifflet?
Adaptavist used Sifflet’s observability platform to map the blast radius of changes, alert users before issues occurred, and validate results pre-production. This proactive approach to data pipeline monitoring helped them eliminate downtime during a major refactor and shift from 'merge and pray' to a risk-aware, observability-first workflow.
Can I use custom dbt metadata for data governance in Sifflet?
Absolutely! Our new dbt tab surfaces custom metadata defined in your dbt models, which you can leverage for better data governance and data profiling. It’s all about giving you the flexibility to manage your data assets exactly the way you need.
Data Observability is Now
Make Data Observability Everyone’s Business Now