Book a Demo
Request a demo
Get ahead of business issues before they become business catastrophes.









Show Your Stack Who’s Boss
Unified data observability that packs a three-in-one punch. From data discovery to integrated monitoring and troubleshooting capabilities, you’ll be the one in charge.
Seamlessly connect with all your favorite data tools to centralize insights and unlock the full potential of your data ecosystem.

Join the ranks of happy customers who’ve made Sifflet a G2 leader, trusted for its innovation and impact
Stay ahead of issues with real-time alerts that keep you informed and in control of your data health
Organize, discover, and leverage your data assets effortlessly with a smart, searchable catalog built for modern teams.
Harness the power of AI-driven suggestions to improve efficiency, accuracy, and decision-making across your workflows.

Empower your team with tailored access, enabling secure collaboration that drives smarter decisions.
Frequently asked questions
How does Sifflet help reduce AI bias and improve model fairness?
Reducing AI bias starts with understanding your data. Sifflet’s observability platform gives you deep visibility into data sources, transformations, and quality. By tracking data lineage and applying data profiling, teams can identify and correct biased inputs before they affect model outcomes. This transparency helps build more ethical and reliable AI systems.
Who should be responsible for data quality in an organization?
That's a great topic! While there's no one-size-fits-all answer, the best data quality programs are collaborative. Everyone from data engineers to business users should play a role. Some organizations adopt data contracts or a Data Mesh approach, while others use centralized observability tools to enforce data validation rules and ensure SLA compliance.
Can data quality monitoring alone guarantee data reliability?
Not quite. While data quality monitoring helps ensure individual datasets are accurate and consistent, data reliability goes further by ensuring your entire data system is dependable over time. That includes pipeline orchestration visibility, anomaly detection, and proactive monitoring. Pairing data quality with a robust observability platform gives you a more comprehensive approach to reliability.
What makes Sifflet’s approach to data observability unique?
Our approach stands out because we treat data observability as both an engineering and organizational concern. By combining telemetry instrumentation, root cause analysis, and business KPI tracking, we help teams align technical reliability with business outcomes.
Can I deploy Sifflet in my own environment for better control?
Absolutely! Sifflet offers both SaaS and self-managed deployment models. With the self-managed option, you can run the platform entirely within your own infrastructure, giving you full control and helping meet strict compliance and security requirements.
What is data lineage and why is it important for data teams?
Data lineage is a visual map that shows how data flows from its source through transformations to its final destination, like dashboards or ML models. It's essential for data teams because it enables faster root cause analysis, improves data trust, and supports smarter change management. When paired with a data observability platform like Sifflet, lineage becomes a powerful tool for tracking data quality and ensuring SLA compliance.
How does this integration help with root cause analysis?
By including Fivetran connectors and source assets in the lineage graph, Sifflet gives you full visibility into where data issues originate. This makes it much easier to perform root cause analysis and resolve incidents faster, improving overall data reliability.
Why is investing in data observability important for business leaders?
Great question! Investing in data observability helps organizations proactively monitor the health of their data, reduce the risk of bad data incidents, and ensure data quality across pipelines. It also supports better decision-making, improves SLA compliance, and helps maintain trust in analytics. Ultimately, it’s a strategic move that protects your business from costly mistakes and missed opportunities.
Data Observability is Now
Make Data Observability Everyone’s Business Now







-p-500.png)
