Book a Demo

Request a demo

Get ahead of business issues before they become business catastrophes.

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Show Your Stack Who’s Boss

Unified data observability that packs a three-in-one punch. From data discovery to integrated monitoring and troubleshooting capabilities, you’ll be the one in charge.

Seamlessly connect with all your favorite data tools to centralize insights and unlock the full potential of your data ecosystem.
 g2 labels
Join the ranks of happy customers who’ve made Sifflet a G2 leader, trusted for its innovation and impact
sifflet platform graph
Stay ahead of issues with real-time alerts that keep you informed and in control of your data health
Sifflet platform tags
Organize, discover, and leverage your data assets effortlessly with a smart, searchable catalog built for modern teams.
Sifflet platform code extract
Harness the power of AI-driven suggestions to improve efficiency, accuracy, and decision-making across your workflows.
sifflet work team
Empower your team with tailored access, enabling secure collaboration that drives smarter decisions.

Frequently asked questions

Why should data alerts live in ServiceNow?
If your team already uses ServiceNow for incident management, having your data alerts show up there means fewer missed issues and faster resolution times. It brings transparency to your data pipelines and supports better data governance and trust.
How did Sifflet help Meero reduce the time spent on troubleshooting data issues?
Sifflet significantly cut down Meero's troubleshooting time by enabling faster root cause analysis. With real-time alerts and automated anomaly detection, the data team was able to identify and resolve issues in minutes instead of hours, saving up to 50% of their time.
How does Sifflet’s observability platform help reduce alert fatigue?
We hear this a lot — too many alerts, not enough clarity. At Sifflet, we focus on intelligent alerting by combining metadata, data lineage tracking, and usage patterns to prioritize what really matters. Instead of just flagging that something broke, our platform tells you who’s affected, why it matters, and how to fix it. That means fewer false positives and more actionable insights, helping you cut through the noise and focus on what truly impacts your business.
How does Sifflet help reduce alert fatigue in data teams?
Great question! Sifflet tackles alert fatigue by using AI-native monitoring that understands business context. Instead of flooding teams with false positives, it prioritizes alerts based on downstream impact. This means your team focuses on real issues, improving trust in your observability tools and saving valuable engineering time.
How does Sifflet support data teams in improving data pipeline monitoring?
Sifflet’s observability platform offers powerful features like anomaly detection, pipeline error alerting, and data freshness checks. We help teams stay on top of their data workflows and ensure SLA compliance with minimal friction. Come chat with us at Booth Y640 to learn more!
Can better design really improve data reliability and efficiency?
Absolutely. A well-designed observability platform not only looks good but also enhances user efficiency and reduces errors. By streamlining workflows for tasks like root cause analysis and data drift detection, Sifflet helps teams maintain high data reliability while saving time and reducing cognitive load.
What’s next for Sifflet’s metrics observability capabilities?
We’re expanding support to more BI and transformation tools beyond Looker, and enhancing our ML-based monitoring to group business metrics by domain. This will improve consistency and make it even easier for users to explore metrics across the semantic layer.
Why is data observability important for data transformation pipelines?
Great question! Data observability is essential for transformation pipelines because it gives teams visibility into data quality, pipeline performance, and transformation accuracy. Without it, errors can go unnoticed and create downstream issues in analytics and reporting. With a solid observability platform, you can detect anomalies, track data freshness, and ensure your transformations are aligned with business goals.
Still have questions?

Data Observability is Now

Make Data Observability Everyone’s Business Now