Home
Contact
Contact Us
Tame %%your%% stack.
If you want to learn more about data observability and what Sifflet can do for you, drop us a message below and we'll get back to you as soon as possible.













Still have a question in mind ?
Contact Us
Frequently asked questions
What makes Sifflet stand out from other data observability platforms?
Great question! Sifflet stands out through its fast setup, intuitive interface, and powerful features like Field Level Lineage and auto-coverage. It’s designed to give you full data stack observability quickly, so you can focus on insights instead of infrastructure. Plus, its visual data volume tracking and anomaly detection help ensure data reliability across your pipelines.
What role does accessibility play in Sifflet’s UI design?
Accessibility is a core part of our design philosophy. We ensure that key indicators in our observability tools, such as data freshness checks or pipeline health statuses, are communicated using both color and iconography. This approach supports inclusive experiences for users with visual impairments, including color blindness.
Why is it important to align KPIs with data team objectives?
Aligning KPIs with your data team’s goals is essential for clarity and motivation. When everyone knows what success looks like and how it’s measured, it creates a sense of purpose. Tools that support data quality monitoring and metrics collection can help track those KPIs effectively and ensure your team is on the right path.
How does Sifflet maintain visual and interaction consistency across its observability platform?
We use a reusable component library based on atomic design principles, along with UX writing guidelines to ensure consistent terminology. This helps users quickly understand telemetry instrumentation, metrics collection, and incident response workflows without needing to relearn interactions across different parts of the platform.
How can Sifflet help ensure SLA compliance and prevent bad data from affecting business decisions?
Sifflet helps teams stay on top of SLA compliance with proactive data freshness checks, anomaly detection, and incident tracking. Business users can rely on health indicators and lineage views to verify data quality before making decisions, reducing the risk of costly errors due to unreliable data.
What’s coming next for the Sifflet AI Assistant?
We’re excited about what’s ahead. Soon, the Sifflet AI Assistant will allow non-technical users to create monitors using natural language, expand monitoring coverage automatically, and provide deeper insights into resource utilization and capacity planning to support scalable data observability.
What role does data quality monitoring play in a successful data management strategy?
Data quality monitoring is essential for maintaining the integrity of your data assets. It helps catch issues like missing values, inconsistencies, and outdated information before they impact business decisions. Combined with data observability, it ensures that your data catalog reflects trustworthy, high-quality data across the pipeline.
How does Shippeo’s use of data pipeline monitoring enhance internal decision-making?
By enriching and aggregating operational data, Shippeo creates a reliable source of truth that supports product and operations teams. Their pipeline health dashboards and observability tools ensure that internal stakeholders can trust the data driving their decisions.






-p-500.png)
