Home
Contact
Contact Us
Tame %%your%% stack.
If you want to learn more about data observability and what Sifflet can do for you, drop us a message below and we'll get back to you as soon as possible.






Still have a question in mind ?
Contact Us
Frequently asked questions
How can I prevent schema changes from breaking my data pipelines?
You can prevent schema-related breakages by using data observability tools that offer real-time schema drift detection and alerting. These tools help you catch changes early, validate against data contracts, and maintain SLA compliance across your data pipelines.
What’s next for Sifflet’s metrics observability capabilities?
We’re expanding support to more BI and transformation tools beyond Looker, and enhancing our ML-based monitoring to group business metrics by domain. This will improve consistency and make it even easier for users to explore metrics across the semantic layer.
What exactly is data observability, and how is it different from traditional data monitoring?
Great question! Data observability goes beyond traditional data monitoring by not only detecting when something breaks in your data pipelines, but also understanding why it matters. While monitoring might tell you a pipeline failed, data observability connects that failure to business impact—like whether your CFO’s dashboard is now showing outdated numbers. It's about trust, context, and actionability.
What is data governance and why does it matter for modern businesses?
Data governance is a framework of policies, roles, and processes that ensure data is accurate, secure, and used responsibly across an organization. It brings clarity and accountability to data management, helping teams trust the data they use, stay compliant with regulations, and make confident decisions. When paired with data observability tools, governance ensures data remains reliable and actionable at scale.
How does the Model Context Protocol (MCP) improve data observability with LLMs?
Great question! MCP allows large language models to access structured external context like pipeline metadata, logs, and diagnostics tools. At Sifflet, we use MCP to enhance data observability by enabling intelligent agents to monitor, diagnose, and act on issues across complex data pipelines in real time.
Why is data observability important for large organizations?
Data observability helps organizations ensure data quality, monitor pipelines in real time, and build trust in their data. At Big Data LDN, we’ll share how companies like Penguin Random House use observability tools to improve data governance and drive better decisions.
Can I customize how alerts are routed to ServiceNow from Sifflet?
Absolutely! You can customize routing based on alert metadata like domain, severity, or affected system. This ensures the right team gets notified without any manual triage, making your data pipeline monitoring more actionable and reliable.
What are some common reasons data freshness breaks down in a pipeline?
Freshness issues often start with delays in source systems, ingestion bottlenecks, slow transformation jobs, or even caching problems in dashboards. That's why a strong observability platform needs to monitor every stage of the pipeline, from ingestion latency to delivery, to ensure data reliability and timely decision-making.






-p-500.png)
