Contact Us

Tame %%your%% stack.

If you want to learn more about data observability and what Sifflet can do for you, drop us a message below and we'll get back to you as soon as possible.

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How can a data observability tool help when my data is often incomplete or inaccurate?
Great question! If you're constantly dealing with missing values, duplicates, or inconsistent formats, a data observability platform can be a game-changer. It provides real-time metrics and data quality monitoring, so you can detect and fix issues before they impact your reports or decisions.
What’s the best way to prevent bad data from impacting our business decisions?
Preventing bad data starts with proactive data quality monitoring. That includes data profiling, defining clear KPIs, assigning ownership, and using observability tools that provide real-time metrics and alerts. Integrating data lineage tracking also helps you quickly identify where issues originate in your data pipelines.
How does Sifflet use AI to enhance data observability?
Sifflet uses AI not just for buzzwords, but to genuinely improve your workflows. From AI-powered metadata generation to dynamic thresholding and intelligent anomaly detection, Sifflet helps teams automate data quality monitoring and make faster, smarter decisions based on real-time insights.
Why are data consumers becoming more involved in observability decisions?
We’re seeing a big shift where data consumers—like analysts and business users—are finally getting a seat at the table. That’s because data observability impacts everyone, not just engineers. When trust in data is operationalized, it boosts confidence across the business and turns data teams into value creators.
How does a data observability platform help improve inventory accuracy?
A data observability platform continuously monitors inventory data using real-time metrics and anomaly detection. It compares RFID scans with POS transactions, flags inconsistencies, and tracks key inventory KPIs. This helps retailers maintain more accurate stock levels and reduce shrinkage or overstocking.
Can I use Sifflet to detect issues in my dbt models before they impact downstream dashboards?
Absolutely! Sifflet's real-time anomaly detection and full data lineage tracking make it easy to catch issues in your dbt models early. This proactive approach helps prevent broken dashboards and ensures data reliability across your analytics pipeline.
How does Sifflet support real-time data lineage and observability?
Sifflet provides automated, field-level data lineage integrated with real-time alerts and anomaly detection. It maps how data flows across your stack, enabling quick root cause analysis and impact assessments. With features like data drift detection, schema change tracking, and pipeline error alerting, Sifflet helps teams stay ahead of issues and maintain data reliability.
What should I look for in a reverse ETL tool?
When choosing a reverse ETL tool, key features to consider include reliable syncing, strong security and privacy controls, and broad integration capabilities. These features help ensure smooth data pipeline monitoring and support data governance across your organization.

Data Observability %%is Now%%

Make Data Observability Everyone’s Business Now

Contact Us