Contact us
Tame your stack.
If you want to learn more about data observability and what Sifflet can do for you,
drop us a message below and we'll get back to you as soon as possible.





Show Your Stack Who’s Boss
Unified data observability that packs a three-in-one punch. From data discovery to integrated monitoring and troubleshooting capabilities, you’ll be the one in charge.
Seamlessly connect with all your favorite data tools to centralize insights and unlock the full potential of your data ecosystem.

Join the ranks of happy customers who’ve made Sifflet a G2 leader, trusted for its innovation and impact
Stay ahead of issues with real-time alerts that keep you informed and in control of your data health
Organize, discover, and leverage your data assets effortlessly with a smart, searchable catalog built for modern teams.
Harness the power of AI-driven suggestions to improve efficiency, accuracy, and decision-making across your workflows.

Empower your team with tailored access, enabling secure collaboration that drives smarter decisions.
Frequently asked questions
What exactly is the modern data stack, and why is it so popular now?
The modern data stack is a collection of cloud-native tools that help organizations transform raw data into actionable insights. It's popular because it simplifies data infrastructure, supports scalability, and enables faster, more accessible analytics across teams. With tools like Snowflake, dbt, and Airflow, teams can build robust pipelines while maintaining visibility through data observability platforms like Sifflet.
Why is data observability so important for AI-powered organizations in 2025?
Great question! As AI continues to evolve, the quality and reliability of the data feeding those models becomes even more critical. Data observability ensures that your AI systems are powered by clean, accurate, and up-to-date data. With platforms like Sifflet, organizations can detect issues like data drift, monitor real-time metrics, and maintain data governance, all of which help AI models stay accurate and trustworthy.
Why is Sifflet excited about integrating MCP with its observability tools?
We're excited because MCP allows us to build intelligent, context-aware agents that go beyond alerts. With MCP, our observability tools can now support real-time metrics analysis, dynamic thresholding, and even automated remediation. It’s a huge step forward in delivering reliable and scalable data observability.
How can Sifflet help ensure SLA compliance and prevent bad data from affecting business decisions?
Sifflet helps teams stay on top of SLA compliance with proactive data freshness checks, anomaly detection, and incident tracking. Business users can rely on health indicators and lineage views to verify data quality before making decisions, reducing the risk of costly errors due to unreliable data.
What can I expect from Sifflet’s upcoming webinar?
Join us on January 22nd for a deep dive into Sifflet’s 2024 highlights and a preview of what’s ahead in 2025. We’ll cover innovations in data observability, including real-time metrics, faster incident resolution, and the upcoming Sifflet AI Agent. It’s the perfect way to kick off the year with fresh insights and inspiration!
What role does data quality monitoring play in a successful data management strategy?
Data quality monitoring is essential for maintaining the integrity of your data assets. It helps catch issues like missing values, inconsistencies, and outdated information before they impact business decisions. Combined with data observability, it ensures that your data catalog reflects trustworthy, high-quality data across the pipeline.
How does SQL Table Tracer support different SQL dialects for data lineage tracking?
SQL Table Tracer uses Antlr4 and a unified grammar with semantic predicates to support multiple SQL dialects like Snowflake, Redshift, and PostgreSQL. This ensures accurate data lineage tracking across diverse systems without needing separate parsers for each dialect.
How can organizations choose the right observability tools for their data stack?
Choosing the right observability tools depends on your data maturity and stack complexity. Look for platforms that offer comprehensive data quality monitoring, support for both batch and streaming data, and features like data lineage tracking and alert correlation. Platforms like Sifflet provide end-to-end visibility, making it easier to maintain SLA compliance and reduce incident response times.
Data Observability is Now
Make Data Observability Everyone’s Business Now