Integrates with your %%modern data stack%%
Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Results tag
Showing 0 results
More integration coming soon !
The Sifflet team is always working hard on incorporating more integrations into our product. Get in touch if you want us to keep you updated!
Oops! Something went wrong while submitting the form.

Still have a question in mind ?
Contact Us
Frequently asked questions
How does data observability support MLOps and AI initiatives at Hypebeast?
Data observability plays a key role in Hypebeast’s MLOps strategy by monitoring data quality from ML models before it reaches dashboards or decision systems. This ensures that AI-driven insights are trustworthy and aligned with business goals.
How does Sifflet support data quality monitoring for business metrics?
Sifflet uses ML-based data quality monitoring to detect anomalies in business metrics and alert users in real time. This enables both data and business teams to quickly investigate issues, perform root cause analysis, and maintain trust in their data.
How does Sifflet enhance data lineage tracking for dbt projects?
Sifflet enriches your data lineage tracking by visually mapping out your dbt models and how they connect across different projects. This is especially useful for teams managing multiple dbt repositories, as Sifflet brings everything together into a clear, centralized lineage view that supports root cause analysis and proactive monitoring.
Why is data reliability more important than ever?
With more teams depending on data for everyday decisions, data reliability has become a top priority. It’s not just about infrastructure uptime anymore, but also about ensuring the data itself is accurate, fresh, and trustworthy. Tools for data quality monitoring and root cause analysis help teams catch issues early and maintain confidence in their analytics.
Why is data observability so important for modern data teams?
Great question! Data observability is essential because it gives teams full visibility into the health of their data pipelines. Without it, small issues can quickly snowball into major incidents, like broken dashboards or faulty machine learning models. At Sifflet, we help you catch problems early with real-time metrics and proactive monitoring, so your team can focus on creating insights, not putting out fires.
What role do tools like Apache Spark and dbt play in data transformation?
Apache Spark and dbt are powerful tools for managing different aspects of data transformation. Spark is great for large-scale, distributed processing, especially when working with complex transformations and high data volumes. dbt, on the other hand, brings software engineering best practices to SQL-based transformations, making it ideal for analytics engineering. Both tools benefit from integration with observability platforms to ensure transformation pipelines run smoothly and reliably.
How does Sifflet support collaboration across data teams?
Sifflet promotes un-siloed data quality by offering a unified platform where data engineers, analysts, and business users can collaborate. Features like pipeline health dashboards, data lineage tracking, and automated incident reports help teams stay aligned and respond quickly to issues.
What is data observability and why is it important for modern data teams?
Data observability is the ability to monitor, understand, and troubleshoot data health across the entire data stack. It's essential for modern data teams because it helps ensure data reliability, improves trust in analytics, and prevents costly issues caused by broken data pipelines or inaccurate dashboards. With the rise of complex infrastructures and real-time data usage, having a strong observability platform in place is no longer optional.




















-p-500.png)
