Integrates with your %%modern data stack%%
Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Results tag
Showing 0 results
More integration coming soon !
The Sifflet team is always working hard on incorporating more integrations into our product. Get in touch if you want us to keep you updated!
Oops! Something went wrong while submitting the form.

Still have a question in mind ?
Contact Us
Frequently asked questions
How does Sifflet’s dbt Impact Analysis improve data pipeline monitoring?
By surfacing impacted tables, dashboards, and other assets directly in GitHub or GitLab, Sifflet’s dbt Impact Analysis gives teams real-time visibility into how changes affect the broader data pipeline. This supports better data pipeline monitoring and helps maintain data reliability.
How can business teams benefit from using Sifflet Insights?
Business teams can access data quality insights directly within their BI dashboards, reducing their reliance on data engineers. This democratizes data observability and empowers teams to make confident, data-driven decisions with full transparency into data lineage and reliability.
How does Sifflet support data quality monitoring for large organizations?
Sifflet is built to scale. It supports automated data quality monitoring across hundreds of assets, as seen with Carrefour Links monitoring over 800 data assets in 8+ countries. With dynamic thresholding, schema change detection, and real-time metrics, Sifflet ensures SLA compliance and consistent data reliability across complex ecosystems.
What does it mean to treat data as a product?
Treating data as a product means managing data with the same care and strategy as a traditional product. It involves packaging, maintaining, and delivering high-quality data that serves a specific purpose or audience. This approach improves data reliability and makes it easier to monetize or use for strategic decision-making.
What future observability goals has Carrefour set?
Looking ahead, Carrefour plans to expand monitoring to more than 1,500 tables, integrate AI-driven anomaly detection, and implement data contracts and SLA monitoring to further strengthen data governance and accountability.
How does Sifflet help with monitoring data distribution?
Sifflet makes distribution monitoring easy by using statistical profiling to learn what 'normal' looks like in your data. It then alerts you when patterns drift from those baselines. This helps you maintain SLA compliance and avoid surprises in dashboards or ML models. Plus, it's all automated within our data observability platform so you can focus on solving problems, not just finding them.
How does reverse ETL improve data reliability and reduce manual data requests?
Reverse ETL automates the syncing of data from your warehouse to business apps, helping reduce the number of manual data requests across teams. This improves data reliability by ensuring consistent, up-to-date information is available where it’s needed most, while also supporting SLA compliance and data automation efforts.
What is a Single Source of Truth, and why is it so hard to achieve?
A Single Source of Truth (SSOT) is a centralized repository where all organizational data is stored and accessed consistently. While it sounds ideal, achieving it is tough because different tools often measure data in unique ways, leading to multiple interpretations. Ensuring data reliability and consistency across sources is where data observability platforms like Sifflet can make a real difference.




















-p-500.png)
