Integrates with your %%modern data stack%%
Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Results tag
Showing 0 results
More integration coming soon !
The Sifflet team is always working hard on incorporating more integrations into our product. Get in touch if you want us to keep you updated!
Oops! Something went wrong while submitting the form.

Still have a question in mind ?
Contact Us
Frequently asked questions
How does Flow Stopper support root cause analysis and incident prevention?
Flow Stopper enables early anomaly detection and integrates with your orchestrator to halt execution when issues are found. This makes it easier to perform root cause analysis before problems escalate and helps prevent incidents that could affect business-critical dashboards or KPIs.
What challenges did Hypebeast face when transitioning to full-scale data observability?
One major challenge was shifting the company culture from being data-aware to truly data-driven. Technically, integrating new observability tools into existing infrastructures and managing the initial investment in time and resources also posed hurdles.
Why is data observability essential for building trusted data products?
Great question! Data observability is key because it helps ensure your data is reliable, transparent, and consistent. When you proactively monitor your data with an observability platform like Sifflet, you can catch issues early, maintain trust with your data consumers, and keep your data products running smoothly.
What role did data observability play in improving Meero's data reliability?
Data observability was key to Meero's success in maintaining reliable data pipelines. By using Sifflet’s observability platform, they could monitor data freshness, schema changes, and volume anomalies, ensuring their data remained trustworthy and accurate for business decision-making.
Can Sifflet help with data quality monitoring directly from the Data Catalog?
Absolutely! Sifflet integrates data quality monitoring into its Data Catalog, allowing users to define and view data quality checks right alongside asset metadata. This gives teams real-time insights into data reliability and helps build trust in the assets they’re using for decision-making.
How does Sifflet help with data discovery across different tools like Snowflake and BigQuery?
Great question! Sifflet acts as a unified observability platform that consolidates metadata from tools like Snowflake and BigQuery into one centralized Data Catalog. By surfacing tags, labels, and schema details, it makes data discovery and governance much easier for all stakeholders.
Why is data observability more than just monitoring?
Great question! At Sifflet, we believe data observability is about operationalizing trust, not just catching issues. It’s the foundation for reliable data pipelines, helping teams ensure data quality, track lineage, and resolve incidents quickly so business decisions are always based on trustworthy data.
Who should be responsible for managing data quality in an organization?
Data quality management works best when it's a shared responsibility. Data stewards often lead the charge by bridging business needs with technical implementation. Governance teams define standards and policies, engineering teams build the monitoring infrastructure, and business users provide critical domain expertise. This cross-functional collaboration ensures that quality issues are caught early and resolved in ways that truly support business outcomes.