Integrates with your %%modern data stack%%

Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.

Search an integration
Browse by category
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Want %%Sifflet%% to integrate your stack?

We'd be such a good fit together

Talk to an expert

Sifflet’s AI Helps Us Focus on What Moves the Business

What impressed us most about Sifflet’s AI-native approach is how seamlessly it adapts to our data landscape — without needing constant tuning. The system learns patterns across our workflows and flags what matters, not just what’s noisy. It’s made our team faster and more focused, especially as we scale analytics across the business.

Simoh-Mohamed Labdoui
Head of Data

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist

"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam

" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios

"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links

"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast
Still have a question in mind ?
Contact Us

Frequently asked questions

How does Sifflet help with analytics tools like Looker?
Sifflet extends its end-to-end data observability to Looker, helping you ensure the data powering your dashboards is accurate and reliable. This means fewer surprises and more confidence in your business insights.
How does a data observability platform help improve inventory accuracy?
A data observability platform continuously monitors inventory data using real-time metrics and anomaly detection. It compares RFID scans with POS transactions, flags inconsistencies, and tracks key inventory KPIs. This helps retailers maintain more accurate stock levels and reduce shrinkage or overstocking.
What’s the difference between a data catalog and a storage platform in observability?
A great distinction! Storage platforms hold your actual data, while a data catalog helps you understand what that data means. Sifflet connects both, so when we detect an anomaly, the catalog tells you what business process is affected and who should be notified. It’s how we turn raw telemetry into actionable insights for better incident response automation and SLA compliance.
Can schema issues affect SLA compliance in real-time analytics?
Absolutely. When schema changes go undetected, they can cause delays, errors, or data loss that violate your SLA commitments. Real-time metrics and schema monitoring are essential for maintaining SLA compliance and keeping your analytics pipeline observability strong.
How does data observability complement a data catalog?
While a data catalog helps you find and understand your data, data observability ensures that the data you find is actually reliable. Observability tools like Sifflet monitor the health of your data pipelines in real time, using features like data freshness checks, anomaly detection, and data quality monitoring. Together, they give you both visibility and trust in your data.
How does data observability fit into the modern data stack?
Data observability integrates across your existing data stack, from ingestion tools like Airflow and AWS Glue to storage solutions like Snowflake and Redshift. It acts as a monitoring layer that provides real-time insights and alerts across each stage, helping teams maintain pipeline health and ensure data freshness checks are always in place.
What’s the role of an observability platform in scaling data trust?
An observability platform helps scale data trust by providing real-time metrics, automated anomaly detection, and data lineage tracking. It gives teams visibility into every layer of the data pipeline, so issues can be caught before they impact business decisions. When observability is baked into your stack, trust becomes a natural part of the system.
When should I consider using a point solution like Anomalo or Bigeye instead of a full observability platform?
If your team has a narrow focus on anomaly detection or prefers a SQL-first, hands-on approach to monitoring, tools like Anomalo or Bigeye can be great fits. However, for broader needs like data governance, business impact analysis, and cross-functional collaboration, a platform like Sifflet offers more comprehensive data observability.