IntEgration

Integrates with your modern data stack

Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.

Search an integration
Browse by category
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Want Sifflet to integrate your stack?

We'd be such a good fit together

"Enabler of Cross Platform Data Storytelling"

"Sifflet has been a game-changer for our organization, providing full visibility of data lineage across multiple repositories and platforms. The ability to connect to various data sources ensures observability regardless of the platform, and the clean, intuitive UI makes setup effortless, even when uploading dbt manifest files via the API. Their documentation is concise and easy to follow, and their team's communication has been outstanding—quickly addressing issues, keeping us informed, and incorporating feedback. "

Callum O'Connor
Senior Analytics Engineer, The Adaptavist
"Building Harmony Between Data and Business With Sifflet"

"Sifflet serves as our key enabler in fostering a harmonious relationship with business teams. By proactively identifying and addressing potential issues before they escalate, we can shift the focus of our interactions from troubleshooting to driving meaningful value. This approach not only enhances collaboration but also ensures that our efforts are aligned with creating impactful outcomes for the organization."

Sophie Gallay
Data & Analytics Director, Etam
" Sifflet empowers our teams through Centralized Data Visibility"

"Having the visibility of our DBT transformations combined with full end-to-end data lineage in one central place in Sifflet is so powerful for giving our data teams confidence in our data, helping to diagnose data quality issues and unlocking an effective data mesh for us at BBC Studios"

Ross Gaskell
Software engineering manager, BBC Studios
"Sifflet allows us to find and trust our data"

"Sifflet has transformed our data observability management at Carrefour Links. Thanks to Sifflet's proactive monitoring, we can identify and resolve potential issues before they impact our operations. Additionally, the simplified access to data enables our teams to collaborate more effectively."

Mehdi Labassi
CTO, Carrefour Links
"A core component of our data strategy and transformation"

"Using Sifflet has helped us move much more quickly because we no longer experience the pain of constantly going back and fixing issues two, three, or four times."

Sami Rahman
Director of Data, Hypebeast

Frequently asked questions

How does Sifflet help with end-to-end data observability?
Sifflet enhances end-to-end data observability by allowing you to declare any asset in your data stack, including custom applications and scripts. This ensures full visibility into your data pipelines and supports comprehensive data lineage tracking and root cause analysis.
What makes Sifflet’s approach to anomaly detection more reliable than traditional methods?
Sifflet uses intelligent, ML-driven anomaly detection that evolves with your data. Instead of relying on static rules, it adjusts sensitivity and parameters in real time, improving data reliability and helping teams focus on real issues without being overwhelmed by alert fatigue.
How can data observability support the implementation of a Single Source of Truth?
Data observability helps validate and sustain a Single Source of Truth by proactively monitoring data quality, tracking data lineage, and detecting anomalies in real time. Tools like Sifflet provide automated data quality monitoring and root cause analysis, which are essential for maintaining trust in your data and ensuring consistent decision-making across teams.
Can Sifflet help with data quality monitoring directly from the Data Catalog?
Absolutely! Sifflet integrates data quality monitoring into its Data Catalog, allowing users to define and view data quality checks right alongside asset metadata. This gives teams real-time insights into data reliability and helps build trust in the assets they’re using for decision-making.
How does Sifflet support real-time metrics and proactive monitoring?
Sifflet’s observability platform is designed to provide real-time metrics and proactive monitoring through advanced data quality checks, anomaly detection, and custom health scores. This helps data teams catch issues before they escalate, ensuring your data products stay healthy and consistent.
Is this feature scalable for large datasets and multiple data assets?
Yes, it is! With Sifflet’s auto-coverage and observability tools, you can monitor distribution deviation at scale with just a few clicks. Whether you're working with batch data observability or streaming data monitoring, Sifflet has you covered with automated, scalable insights.
Can Sifflet help with root cause analysis in complex data systems?
Absolutely! In early 2025, we're rolling out advanced root cause analysis tools designed to help you detect subtle anomalies and trace them back to their source. Whether the issue lies in your code, data, or pipelines, our observability platform will help you get to the bottom of it faster.
What are the key features to look for in a data observability platform?
When evaluating an observability platform, look for strong data lineage tracking, real-time metrics collection, anomaly detection capabilities, and broad integrations across your data stack. Features like field-level lineage, ease of setup, and user-friendly dashboards can make a big difference too. At Sifflet, we believe observability should empower both technical and business users with the context they need to trust and act on data.
Still have questions?