Integrates with your %%modern data stack%%
Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Results tag
Showing 0 results
More integration coming soon !
The Sifflet team is always working hard on incorporating more integrations into our product. Get in touch if you want us to keep you updated!
Oops! Something went wrong while submitting the form.

Still have a question in mind ?
Contact Us
Frequently asked questions
Can I define data quality monitors as code using Sifflet?
Absolutely! With Sifflet's Data-Quality-as-Code (DQaC) v2 framework, you can define and manage thousands of monitors in YAML right from your IDE. This Everything-as-Code approach boosts automation and makes data quality monitoring scalable and developer-friendly.
How does Kubernetes help with container orchestration?
Kubernetes makes it easier to manage large-scale containerized applications by automating deployment, scaling, and operations. It's a powerful observability tool that supports real-time metrics collection, resource utilization tracking, and pipeline orchestration visibility, helping teams stay on top of their data pipelines.
Who should be the first hire on a new data team?
If you're just starting out, look for someone with 'Full Data Stack' capabilities, like a Data Analyst with strong SQL and business acumen or a Data Engineer with analytics skills. This person can work closely with other teams to build initial pipelines and help shape your data platform. As your needs evolve, you can grow your team with more specialized roles.
What are some common signs of a data distribution issue?
Some red flags include missing categories, unusual clustering of values, unexpected outliers, or uneven splits that don’t align with business logic. These issues often sneak past volume or schema checks, which is why proactive data quality monitoring and data profiling are so important for catching them early.
What are some key features to look for in an observability platform for data?
A strong observability platform should offer data lineage tracking, real-time metrics, anomaly detection, and data freshness checks. It should also integrate with your existing tools like Airflow or Snowflake, and support alerting through Slack or webhook integrations. These capabilities help teams monitor data pipelines effectively and respond quickly to issues.
How does Sifflet’s Freshness Monitor scale across large data environments?
Sifflet’s Freshness Monitor is designed to scale effortlessly. Thanks to our dynamic monitoring mode and continuous scan feature, you can monitor thousands of data assets without manually setting schedules. It’s a smart way to implement data pipeline monitoring across distributed systems and ensure SLA compliance at scale.
Is there a data observability platform that supports both business and technical users?
Yes, Sifflet is designed to be accessible for both business stakeholders and data engineers. It offers intuitive interfaces for no-code monitor creation, context-rich alerts, and field-level data lineage tracking. This democratizes data quality monitoring and helps teams across the organization stay aligned on data health and pipeline performance.
Who benefits from implementing a data observability platform like Sifflet?
Honestly, anyone who relies on data to make decisions—so pretty much everyone. Data engineers, BI teams, data scientists, RevOps, finance, and even executives all benefit. With Sifflet, teams get proactive alerts, root cause analysis, and cross-functional visibility. That means fewer surprises, faster resolutions, and more trust in the data that powers your business.













-p-500.png)
