Integrates with your %%modern data stack%%
Sifflet seamlessly integrates into your data sources and preferred tools, and can run on AWS, Google Cloud Platform, and Microsoft Azure.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Results tag
Showing 0 results
More integration coming soon !
The Sifflet team is always working hard on incorporating more integrations into our product. Get in touch if you want us to keep you updated!
Oops! Something went wrong while submitting the form.

Still have a question in mind ?
Contact Us
Frequently asked questions
What’s the difference between a data catalog and a storage platform in observability?
A great distinction! Storage platforms hold your actual data, while a data catalog helps you understand what that data means. Sifflet connects both, so when we detect an anomaly, the catalog tells you what business process is affected and who should be notified. It’s how we turn raw telemetry into actionable insights for better incident response automation and SLA compliance.
Why is combining data catalogs with data observability tools the future of data management?
Combining data catalogs with data observability tools creates a holistic approach to managing data assets. While catalogs help users discover and understand data, observability tools ensure that data is accurate, timely, and reliable. This integration supports better decision-making, improves data reliability, and strengthens overall data governance.
Why is the traditional approach to data observability no longer enough?
Great question! The old playbook for data observability focused heavily on technical infrastructure and treated data like servers — if the pipeline ran and the schema looked fine, the data was assumed to be trustworthy. But today, data is a strategic asset that powers business decisions, AI models, and customer experiences. At Sifflet, we believe modern observability platforms must go beyond uptime and freshness checks to provide context-aware insights that reflect real business impact.
How can I avoid breaking reports and dashboards during migration?
To prevent disruptions, it's essential to use data lineage tracking. This gives you visibility into how data flows through your systems, so you can assess downstream impacts before making changes. It’s a key part of data pipeline monitoring and helps maintain trust in your analytics.
What role does containerization play in data observability?
Containerization enhances data observability by enabling consistent and isolated environments, which simplifies telemetry instrumentation and anomaly detection. It also supports better root cause analysis when issues arise in distributed systems or microservices architectures.
What exactly is data freshness, and why does it matter so much in data observability?
Data freshness refers to how current your data is relative to the real-world events it's meant to represent. In data observability, it's one of the most critical metrics because even accurate data can lead to poor decisions if it's outdated. Whether you're monitoring financial trades or patient records, stale data can have serious business consequences.
What should I look for in a data lineage tool?
When choosing a data lineage tool, look for easy integration with your data stack, a user-friendly interface for both technical and non-technical users, and complete visibility from data sources to storage. These features ensure effective data observability and support your broader data governance efforts.
How does Kubernetes help with container orchestration?
Kubernetes makes it easier to manage large-scale containerized applications by automating deployment, scaling, and operations. It's a powerful observability tool that supports real-time metrics collection, resource utilization tracking, and pipeline orchestration visibility, helping teams stay on top of their data pipelines.




















-p-500.png)
