


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Is Sifflet easy to integrate into our existing data workflows?
Yes, it’s designed to fit right in. Sifflet connects to your existing data stack via APIs and supports integrations with tools like Slack, Jira, and Microsoft Teams. It also enables 'Quality-as-Code' for teams using infrastructure-as-code, making it a seamless addition to your DataOps best practices.
Can Flow Stopper work with tools like Airflow and Snowflake?
Absolutely! Flow Stopper supports integration with popular tools like Airflow for orchestration and Snowflake for storage. It can run anomaly detection and data validation rules mid-pipeline, helping ensure data quality as it moves through your stack.
What are the key features to look for in a data observability platform?
When evaluating an observability platform, look for strong data lineage tracking, real-time metrics collection, anomaly detection capabilities, and broad integrations across your data stack. Features like field-level lineage, ease of setup, and user-friendly dashboards can make a big difference too. At Sifflet, we believe observability should empower both technical and business users with the context they need to trust and act on data.
Can Sifflet help me trace how data moves through my pipelines?
Absolutely! Sifflet’s data lineage tracking gives you a clear view of how data flows and transforms across your systems. This level of transparency is crucial for root cause analysis and ensuring data governance standards are met.
What are some key benefits of using an observability platform like Sifflet?
Using an observability platform like Sifflet brings several benefits: real-time anomaly detection, proactive incident management, improved SLA compliance, and better data governance. By combining metrics, metadata, and lineage, we help teams move from reactive data quality monitoring to proactive, scalable observability that supports reliable, data-driven decisions.
What makes observability scalable across different teams and roles?
Scalable observability works for engineers, analysts, and business stakeholders alike. It supports telemetry instrumentation for developers, intuitive dashboards for analysts, and high-level confidence signals for executives. By adapting to each role without adding friction, observability becomes a shared language across the organization.
What role does Sifflet’s data catalog play in observability?
Sifflet’s data catalog acts as the central hub for your data ecosystem, enriched with metadata and classification tags. This foundation supports cloud data observability by giving teams full visibility into their assets, enabling better data lineage tracking, telemetry instrumentation, and overall observability platform performance.
How can decision-makers ensure the data they receive is actionable and easy to understand?
It's all about presentation and relevance. Whether you're using Tableau dashboards or traditional slide decks, your data should be tailored to the decision-maker's needs. This is where data observability dashboards and metrics aggregation come in handy, helping to surface the most impactful insights clearly and quickly so leaders can act with confidence.






-p-500.png)
