


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Can I learn about real-world results from Sifflet customers at the event?
Yes, definitely! Companies like Saint-Gobain will be sharing how they’ve used Sifflet for data observability, data lineage tracking, and SLA compliance. It’s a great chance to hear how others are solving real data challenges with our platform.
What is data governance and why does it matter for modern businesses?
Data governance is a framework of policies, roles, and processes that ensure data is accurate, secure, and used responsibly across an organization. It brings clarity and accountability to data management, helping teams trust the data they use, stay compliant with regulations, and make confident decisions. When paired with data observability tools, governance ensures data remains reliable and actionable at scale.
How did Sifflet help reduce onboarding time for new data team members at jobvalley?
Sifflet’s data catalog provided a clear and organized view of jobvalley’s data assets, making it much easier for new team members to understand the data landscape. This significantly cut down onboarding time and helped new hires become productive faster.
What role did data quality monitoring play in jobvalley’s success?
Data quality monitoring was key to jobvalley’s success. By using Sifflet’s data observability tools, they were able to validate the accuracy of business-critical tables, helping build trust in their data and supporting confident, data-driven decision-making.
Why is an observability layer essential in the modern data stack, according to Meero’s experience?
For Meero, having an observability layer like Sifflet was crucial to ensure end-to-end visibility of their data pipelines. It allowed them to proactively monitor data quality, reduce downtime, and maintain SLA compliance, making it an indispensable part of their modern data stack.
What role do tools like Apache Spark and dbt play in data transformation?
Apache Spark and dbt are powerful tools for managing different aspects of data transformation. Spark is great for large-scale, distributed processing, especially when working with complex transformations and high data volumes. dbt, on the other hand, brings software engineering best practices to SQL-based transformations, making it ideal for analytics engineering. Both tools benefit from integration with observability platforms to ensure transformation pipelines run smoothly and reliably.
Who should be responsible for data quality in an organization?
That's a great topic! While there's no one-size-fits-all answer, the best data quality programs are collaborative. Everyone from data engineers to business users should play a role. Some organizations adopt data contracts or a Data Mesh approach, while others use centralized observability tools to enforce data validation rules and ensure SLA compliance.
What is data observability, and why is it important for companies like Hypebeast?
Data observability is the ability to understand the health, reliability, and quality of data across your ecosystem. For a data-driven company like Hypebeast, it helps ensure that insights are accurate and trustworthy, enabling better decision-making across teams.













-p-500.png)
