Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can I see how a business metric is calculated in Sifflet?
Absolutely! With Sifflet’s data lineage tracking, users can view the full column-level lineage from ingestion to consumption. This transparency helps users understand how each metric is computed and how it relates to other data or metrics in the pipeline.
How does a unified data observability platform like Sifflet help reduce chaos in data management?
Great question! At Sifflet, we believe that bringing together data cataloging, data quality monitoring, and lineage tracking into a single observability platform helps reduce Data Entropy and streamline how teams manage and trust their data. By centralizing these capabilities, users can quickly discover assets, monitor their health, and troubleshoot issues without switching tools.
How can decision-makers ensure the data they receive is actionable and easy to understand?
It's all about presentation and relevance. Whether you're using Tableau dashboards or traditional slide decks, your data should be tailored to the decision-maker's needs. This is where data observability dashboards and metrics aggregation come in handy, helping to surface the most impactful insights clearly and quickly so leaders can act with confidence.
Is Sifflet easy to integrate into our existing data workflows?
Yes, it’s designed to fit right in. Sifflet connects to your existing data stack via APIs and supports integrations with tools like Slack, Jira, and Microsoft Teams. It also enables 'Quality-as-Code' for teams using infrastructure-as-code, making it a seamless addition to your DataOps best practices.
What makes Sifflet's approach to data pipeline monitoring unique?
We take a holistic, end-to-end approach to data pipeline monitoring. By collecting telemetry across the entire data stack and automatically tracking field-level data lineage, we empower teams to quickly identify issues and understand their downstream impact, making incident response and resolution much more efficient.
What challenges did Hypebeast face when transitioning to full-scale data observability?
One major challenge was shifting the company culture from being data-aware to truly data-driven. Technically, integrating new observability tools into existing infrastructures and managing the initial investment in time and resources also posed hurdles.
Why did jobvalley choose Sifflet over other data catalog vendors?
After evaluating several data catalog vendors, jobvalley selected Sifflet because of its comprehensive features that addressed both data discovery and data quality monitoring. The platform’s ability to streamline onboarding and support real-time metrics made it the ideal choice for their growing data team.
How does SQL Table Tracer handle different SQL dialects?
SQL Table Tracer uses Antlr4 with semantic predicates to support multiple SQL dialects like Snowflake, Redshift, and PostgreSQL. This flexible parsing approach ensures accurate lineage extraction across diverse environments, which is essential for data pipeline monitoring and distributed systems observability.
Still have questions?