


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What benefits did jobvalley experience from using Sifflet’s data observability platform?
By using Sifflet’s data observability platform, jobvalley improved data reliability, streamlined data discovery, and enhanced collaboration across teams. These improvements supported better decision-making and helped the company maintain a strong competitive edge in the HR tech space.
How do I ensure SLA compliance during a cloud migration?
Ensuring SLA compliance means keeping a close eye on metrics like throughput, resource utilization, and error rates. A robust observability platform can help you track these metrics in real time, so you stay within your service level objectives and keep stakeholders confident.
How does metadata management support data governance?
Strong metadata management allows organizations to capture details about data sources, schemas, and lineage, which is essential for enforcing data governance policies. It also supports compliance monitoring and improves overall data reliability by making data more transparent and trustworthy.
What features should we look for in a data observability tool?
A great data observability tool should offer automated data quality checks like data freshness checks and schema change detection, field-level data lineage tracking for root cause analysis, and a powerful metadata search engine. These capabilities streamline incident response and help maintain data governance across your entire stack.
How can I track the success of my data team?
Define clear success KPIs that support ROI, such as improvements in SLA compliance, reduction in ingestion latency, or increased data reliability. Using data observability dashboards and pipeline health metrics can help you monitor progress and communicate value to stakeholders. It's also important to set expectations early and maintain strong internal communication.
Can I use Sifflet to detect issues in my dbt models before they impact downstream dashboards?
Absolutely! Sifflet's real-time anomaly detection and full data lineage tracking make it easy to catch issues in your dbt models early. This proactive approach helps prevent broken dashboards and ensures data reliability across your analytics pipeline.
How can data teams prioritize what to monitor in complex environments?
Not all data is created equal, so it's important to focus data quality monitoring efforts on the assets that drive business outcomes. That means identifying key dashboards, critical metrics, and high-impact models, then using tools like pipeline health dashboards and SLA monitoring to keep them reliable and fresh.
What is dbt Impact Analysis and how does it help with data observability?
dbt Impact Analysis is a new feature from Sifflet that automatically comments on GitHub or GitLab pull requests with a list of impacted assets when a dbt model is changed. This helps teams enhance their data observability by understanding downstream effects before changes go live.













-p-500.png)
