


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What’s on the horizon for data observability as AI and regulations evolve?
The future of data observability is all about scale and responsibility. With AI adoption growing and regulations tightening, businesses need observability tools that can handle unstructured data, ensure SLA compliance, and support security observability. At Sifflet, we're already helping customers monitor ML models and enforce data contracts, and we're excited about building self-healing pipelines and extending observability to new data types.
How do I choose the right organizational structure for my data team?
It depends on your company's size, data maturity, and use cases. Some teams report to engineering or product, while others operate as independent entities reporting to the CEO or CFO. The key is to avoid silos and unclear ownership. A centralized or hybrid structure often works well to promote collaboration and maintain transparency in data pipelines.
How do declared assets improve data quality monitoring?
Declared assets appear in your Data Catalog just like built-in assets, with full metadata and business context. This improves data quality monitoring by making it easier to track data lineage, perform data freshness checks, and ensure SLA compliance across your entire pipeline.
How does Sifflet support data quality monitoring at scale?
Sifflet uses AI-powered dynamic monitors and data validation rules to automate data quality monitoring across your pipelines. It also integrates with tools like Snowflake and dbt to ensure data freshness checks and schema validations are embedded into your workflows without manual overhead.
How does Sifflet support AI-ready data for enterprises?
Sifflet is designed to ensure data quality and reliability, which are critical for AI initiatives. Our observability platform includes features like data freshness checks, anomaly detection, and root cause analysis, making it easier for teams to maintain high standards and trust in their analytics and AI models.
Can I add non-integrated tools like Salesforce or HubSpot to my data catalog?
Absolutely! With Sifflet’s declarative framework, you can programmatically declare assets from tools like Salesforce, SAP, or HubSpot, even if they aren’t natively integrated. This helps you maintain a complete and unified view of your data ecosystem for better data governance.
What is data observability and why is it important for modern data teams?
Data observability is the ability to monitor and understand the health of your data across the entire data stack. As data pipelines become more complex, having real-time visibility into where and why data issues occur helps teams maintain data reliability and trust. At Sifflet, we believe data observability is essential for proactive data quality monitoring and faster root cause analysis.
Is there a networking opportunity with the Sifflet team at Big Data Paris?
Yes, we’re hosting an exclusive after-party at our booth on October 15! Come join us for great conversations, a champagne toast, and a chance to connect with data leaders who care about data governance, pipeline health, and building resilient systems.













-p-500.png)
