Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can Sifflet detect unexpected values in categorical fields?
Absolutely. Sifflet’s data quality monitoring automatically flags unforeseen values in categorical fields, which is a common issue for analytics engineers. This helps prevent silent errors in your data pipelines and supports better SLA compliance across your analytics workflows.
Can reverse ETL help with data quality monitoring?
Absolutely. By integrating reverse ETL with a strong observability platform like Sifflet, you can implement data quality monitoring throughout the pipeline. This includes real-time alerts for sync issues, data freshness checks, and anomaly detection to ensure your operational data remains trustworthy and accurate.
What role does Sifflet’s Data Catalog play in data governance?
Sifflet’s Data Catalog supports data governance by surfacing labels and tags, enabling classification of data assets, and linking business glossary terms for standardized definitions. This structured approach helps maintain compliance, manage costs, and ensure sensitive data is handled responsibly.
What’s Sifflet’s vision for data observability in 2025?
Our 2025 vision is all about pushing the boundaries of cloud data observability. We're focusing on deeper automation, AI-driven insights, and expanding our observability platform to cover everything from real-time metrics to predictive analytics monitoring. It's about making data operations more resilient, transparent, and scalable.
What makes Sifflet’s data lineage tracking stand out?
Sifflet offers one of the most advanced data lineage tracking capabilities out there. Think of it like a GPS for your data pipelines—it gives you full traceability, helps identify bottlenecks, and supports better pipeline orchestration visibility. It's a game-changer for data governance and optimization.
How does data observability fit into the modern data stack?
Data observability integrates across your existing data stack, from ingestion tools like Airflow and AWS Glue to storage solutions like Snowflake and Redshift. It acts as a monitoring layer that provides real-time insights and alerts across each stage, helping teams maintain pipeline health and ensure data freshness checks are always in place.
Can I see how a business metric is calculated in Sifflet?
Absolutely! With Sifflet’s data lineage tracking, users can view the full column-level lineage from ingestion to consumption. This transparency helps users understand how each metric is computed and how it relates to other data or metrics in the pipeline.
What makes Sifflet’s Data Catalog different from built-in catalogs like Snowsight or Unity Catalog?
Unlike tool-specific catalogs, Sifflet serves as a 'Catalog of Catalogs.' It brings together metadata from across your entire data ecosystem, providing a single source of truth for data lineage tracking, asset discovery, and SLA compliance.
Still have questions?