Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can Sifflet integrate with our existing data tools and platforms?
Absolutely! Sifflet is designed to integrate seamlessly with your current stack. We support a wide range of tools including Airflow, Snowflake, AWS Glue, and more. Our goal is to provide complete pipeline orchestration visibility and data freshness checks, all from one intuitive interface.
What makes Sifflet's approach to data quality unique?
At Sifflet, we believe data quality isn't one-size-fits-all. Our observability platform blends technical robustness with business context, offering customized data quality monitoring that adapts to your specific use cases. This means you get both reliable pipelines and meaningful metrics that align with your business goals.
How does Sifflet make setting up data quality monitoring easier?
Great question! With the launch of Data-Quality-as-Code v2, Sifflet has made it much easier to create and manage monitors at scale. Whether you prefer working programmatically or through the UI, our platform now offers smoother workflows and standardized threshold settings for more intuitive data quality monitoring.
Who should be responsible for managing data quality in an organization?
Data quality management works best when it's a shared responsibility. Data stewards often lead the charge by bridging business needs with technical implementation. Governance teams define standards and policies, engineering teams build the monitoring infrastructure, and business users provide critical domain expertise. This cross-functional collaboration ensures that quality issues are caught early and resolved in ways that truly support business outcomes.
How does data observability support MLOps and AI initiatives at Hypebeast?
Data observability plays a key role in Hypebeast’s MLOps strategy by monitoring data quality from ML models before it reaches dashboards or decision systems. This ensures that AI-driven insights are trustworthy and aligned with business goals.
Why is the traditional approach to data observability no longer enough?
Great question! The old playbook for data observability focused heavily on technical infrastructure and treated data like servers — if the pipeline ran and the schema looked fine, the data was assumed to be trustworthy. But today, data is a strategic asset that powers business decisions, AI models, and customer experiences. At Sifflet, we believe modern observability platforms must go beyond uptime and freshness checks to provide context-aware insights that reflect real business impact.
What role does data lineage tracking play in AI compliance and governance?
Data lineage tracking is essential for understanding where your AI training data comes from and how it has been transformed. With Sifflet’s field-level lineage and Universal Integration API, you get full transparency across your data pipelines. This is crucial for meeting regulatory requirements like GDPR and the AI Act, and it strengthens your overall data governance strategy.
When should I consider using a point solution like Anomalo or Bigeye instead of a full observability platform?
If your team has a narrow focus on anomaly detection or prefers a SQL-first, hands-on approach to monitoring, tools like Anomalo or Bigeye can be great fits. However, for broader needs like data governance, business impact analysis, and cross-functional collaboration, a platform like Sifflet offers more comprehensive data observability.
Still have questions?