


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Can Flow Stopper work with tools like Airflow and Snowflake?
Absolutely! Flow Stopper supports integration with popular tools like Airflow for orchestration and Snowflake for storage. It can run anomaly detection and data validation rules mid-pipeline, helping ensure data quality as it moves through your stack.
How can decision-makers ensure the data they receive is actionable and easy to understand?
It's all about presentation and relevance. Whether you're using Tableau dashboards or traditional slide decks, your data should be tailored to the decision-maker's needs. This is where data observability dashboards and metrics aggregation come in handy, helping to surface the most impactful insights clearly and quickly so leaders can act with confidence.
How does Sifflet help with compliance monitoring and audit logging?
Sifflet is ISO 27001 certified and SOC 2 compliant, and we use a separate secret manager to handle credentials securely. This setup ensures a strong audit trail and tight access control, making compliance monitoring and audit logging seamless for your data teams.
Why is the new join feature in the monitor UI a game changer for data quality monitoring?
The ability to define joins directly in the monitor setup interface means you can now monitor relationships across datasets without writing custom SQL. This is crucial for data quality monitoring because many issues arise from inconsistencies between related tables. Now, you can catch those problems early and ensure better data reliability across your pipelines.
How does Sifflet help with end-to-end data observability?
Sifflet enhances end-to-end data observability by allowing you to declare any asset in your data stack, including custom applications and scripts. This ensures full visibility into your data pipelines and supports comprehensive data lineage tracking and root cause analysis.
Why is data reliability so critical for AI and machine learning systems?
Great question! AI and ML systems rely on massive volumes of data to make decisions, and any flaw in that data gets amplified at scale. Data reliability ensures that your models are trained and operate on accurate, complete, and timely data. Without it, you risk cascading failures, poor predictions, and even regulatory issues. That’s why data observability is essential to proactively monitor and maintain reliability across your pipelines.
How does data quality monitoring help improve data reliability?
Data quality monitoring is essential for maintaining trust in your data. A strong observability platform should offer features like anomaly detection, data profiling, and data validation rules. These tools help identify issues early, so you can fix them before they impact downstream analytics. It’s all about making sure your data is accurate, timely, and reliable.
What does 'agentic observability' mean and why does it matter?
Agentic observability is our vision for the future — where observability platforms don’t just monitor, they act. Think of it as moving from real-time alerts to intelligent copilots. With features like auto-remediation, dynamic thresholding, and incident response automation, Sifflet is building systems that can detect issues, assess impact, and even resolve known problems on their own. It’s a huge step toward self-healing pipelines and truly proactive data operations.