Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Why is data observability gaining momentum now, even though software observability has been around for a while?
Great question! Software observability took off in the 2010s with the rise of cloud-native apps, but data observability is catching up fast. As businesses start treating data as a mission-critical asset—especially with the growth of AI and cloud data platforms like Snowflake—the need for real-time visibility, data reliability, and governance has become urgent. We're in the early innings, but the pace is accelerating quickly.
What is data observability, and why is it important for companies like Hypebeast?
Data observability is the ability to understand the health, reliability, and quality of data across your ecosystem. For a data-driven company like Hypebeast, it helps ensure that insights are accurate and trustworthy, enabling better decision-making across teams.
Where can I find Sifflet at Big Data LDN 2024?
You can find the Sifflet team at Booth Y640 during Big Data LDN on September 18-19. Stop by to learn more about our data observability platform and how we’re helping organizations like the BBC and Penguin Random House improve their data reliability.
How does Sifflet’s Freshness Monitor scale across large data environments?
Sifflet’s Freshness Monitor is designed to scale effortlessly. Thanks to our dynamic monitoring mode and continuous scan feature, you can monitor thousands of data assets without manually setting schedules. It’s a smart way to implement data pipeline monitoring across distributed systems and ensure SLA compliance at scale.
Can MCP help with root cause analysis in data systems?
Absolutely. MCP gives LLMs the ability to retain memory across multi-step interactions and call external tools, which is incredibly useful for root cause analysis. At Sifflet, we use this to build agents that can pinpoint anomalies, trace data lineage, and surface relevant logs automatically.
How does Sifflet support local development workflows for data teams?
Sifflet is integrating deeply with local development tools like dbt and the Sifflet CLI. Soon, you'll be able to define monitors directly in dbt YAML files and run them locally, enabling real-time metrics checks and anomaly detection before deployment, all from your development environment.
How do classification tags support real-time metrics and alerting?
Classification tags help define the structure and importance of your data, which in turn makes it easier to configure real-time metrics and alerts. For example, tagging a 'country' field as low cardinality allows teams to monitor sales data by region, enabling faster anomaly detection and more actionable real-time alerts.
What features should we look for in scalable data observability tools?
When evaluating observability tools, scalability is key. Look for features like real-time metrics, automated anomaly detection, incident response automation, and support for both batch data observability and streaming data monitoring. These capabilities help teams stay efficient as data volumes grow.
Still have questions?