Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What should a solid data quality monitoring framework include?
A strong data quality monitoring framework should be scalable, rule-based and powered by AI for anomaly detection. It should support multiple data sources and provide actionable insights, not just alerts. Tools that enable data drift detection, schema validation and real-time alerts can make a huge difference in maintaining data integrity across your pipelines.
Why is data observability becoming essential for modern data teams?
As data pipelines grow more complex, data observability provides the visibility needed to monitor and troubleshoot issues across the full stack. By adopting a robust observability platform, teams can detect anomalies, ensure SLA compliance, and maintain data reliability without relying on manual checks or reactive fixes.
How does data lineage support compliance with data privacy regulations?
Data lineage plays a key role in compliance monitoring by providing transparency into where data comes from, how it's processed, and where it ends up. This is crucial for meeting regulations like GDPR and HIPAA, and for maintaining strong data governance practices across the organization.
Who should be the first hire on a new data team?
If you're just starting out, look for someone with 'Full Data Stack' capabilities, like a Data Analyst with strong SQL and business acumen or a Data Engineer with analytics skills. This person can work closely with other teams to build initial pipelines and help shape your data platform. As your needs evolve, you can grow your team with more specialized roles.
What kinds of data does Shippeo monitor to support real-time metrics?
Shippeo tracks critical operational data like order volume, GPS positions, and platform activity. With Sifflet, they monitor ingestion latency and data freshness to ensure that metrics powering dashboards and customer reports are always up to date.
Why is combining data catalogs with data observability tools the future of data management?
Combining data catalogs with data observability tools creates a holistic approach to managing data assets. While catalogs help users discover and understand data, observability tools ensure that data is accurate, timely, and reliable. This integration supports better decision-making, improves data reliability, and strengthens overall data governance.
What types of data lineage should I know about?
There are four main types: technical lineage, business lineage, cross-system lineage, and governance lineage. Each serves a different purpose, from debugging pipelines to supporting compliance. Tools like Sifflet offer field-level lineage for deeper insights, helping teams across engineering, analytics, and compliance understand and trust their data.
Can data quality monitoring alone guarantee data reliability?
Not quite. While data quality monitoring helps ensure individual datasets are accurate and consistent, data reliability goes further by ensuring your entire data system is dependable over time. That includes pipeline orchestration visibility, anomaly detection, and proactive monitoring. Pairing data quality with a robust observability platform gives you a more comprehensive approach to reliability.
Still have questions?