


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What is a data platform and why does it matter?
A data platform is a unified system that helps companies collect, store, process, and analyze data across their organization. It acts as the central nervous system for all data operations, powering dashboards, AI models, and decision-making. When paired with strong data observability, it ensures teams can trust their data and move faster with confidence.
Is Sifflet suitable for non-technical users who want to contribute to data quality?
Yes, and that’s one of the things we’re most excited about! Sifflet empowers non-technical users to define custom monitoring rules and participate in data quality efforts without needing to write dbt code. It’s all part of building a culture of shared responsibility around data governance and observability.
Can Sage really help with root cause analysis and incident response?
Absolutely! Sage is designed to retain institutional knowledge, track code changes, and map data lineage in real time. This makes root cause analysis faster and more accurate, which is a huge win for incident response and overall data pipeline monitoring.
How is data freshness different from latency or timeliness?
Great question! While these terms are often used interchangeably, they each mean something different. Data freshness is about how up-to-date your data is. Latency measures the delay from data generation to availability, and timeliness refers to whether that data arrives within expected time windows. Understanding these differences is key to effective data pipeline monitoring and SLA compliance.
What does it mean to treat data as a product?
Treating data as a product means prioritizing its reliability, usability, and trustworthiness—just like you would with any customer-facing product. This mindset shift is driving the need for observability platforms that support data governance, real-time metrics, and proactive monitoring across the entire data lifecycle.
Why are containers such a big deal in modern data infrastructure?
Containers have become essential in modern data infrastructure because they offer portability, faster deployments, and easier scalability. They simplify the way we manage distributed systems and are a key component in cloud data observability by enabling consistent environments across development, testing, and production.
How can I monitor the health of my ETL or ELT pipelines?
Monitoring pipeline health is essential for maintaining data reliability. You can use tools that offer data pipeline monitoring features such as real-time metrics, ingestion latency tracking, and pipeline error alerting. Sifflet’s pipeline health dashboard gives you full visibility into your ETL and ELT processes, helping you catch issues early and keep your data flowing smoothly.
What role does anomaly detection play in modern data contracts?
Anomaly detection helps identify unexpected changes in data that might signal contract violations or semantic drift. By integrating predictive analytics monitoring and dynamic thresholding into your observability platform, you can catch issues before they break dashboards or compromise AI models. It’s a core feature of a resilient, intelligent metadata layer.






-p-500.png)
