


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What does it mean to treat data as a product?
Treating data as a product means prioritizing its reliability, usability, and trustworthiness—just like you would with any customer-facing product. This mindset shift is driving the need for observability platforms that support data governance, real-time metrics, and proactive monitoring across the entire data lifecycle.
Why is standardization important when scaling dbt, and how does Sifflet support it?
Standardization is key to maintaining control as your dbt project grows. Sifflet supports this by centralizing metadata and enabling compliance monitoring through features like data contracts enforcement and asset tagging. This ensures consistency, improves data governance, and reduces the risk of data drift or unmonitored critical assets.
What are some best practices Hypebeast followed for successful data observability implementation?
Hypebeast focused on phased deployment of observability tools, continuous training for all data users, and a strong emphasis on data quality monitoring. These strategies helped ensure smooth adoption and long-term success with their observability platform.
How can I measure the ROI of a data observability platform?
You can measure the ROI of a data observability platform by tracking key metrics like the number of data incidents per year, time to detection, and time to resolution. These real-time metrics give you insight into how often issues occur and how quickly your team can resolve them. Don’t forget to factor in qualitative benefits too, like improved team satisfaction and stronger data governance.
Can I use Sifflet’s data observability tools with other platforms besides Airbyte?
Absolutely! While we’ve built a powerful solution for Airbyte, our Declarative Lineage API is flexible enough to support other platforms like Kafka, Census, Hightouch, and Talend. You can use our sample Python scripts to integrate lineage from these tools and enhance your overall data observability strategy.
Who should be responsible for managing data quality in an organization?
Data quality management works best when it's a shared responsibility. Data stewards often lead the charge by bridging business needs with technical implementation. Governance teams define standards and policies, engineering teams build the monitoring infrastructure, and business users provide critical domain expertise. This cross-functional collaboration ensures that quality issues are caught early and resolved in ways that truly support business outcomes.
How does SQL Table Tracer support different SQL dialects for data lineage tracking?
SQL Table Tracer uses Antlr4 and a unified grammar with semantic predicates to support multiple SQL dialects like Snowflake, Redshift, and PostgreSQL. This ensures accurate data lineage tracking across diverse systems without needing separate parsers for each dialect.
How does Sifflet help improve data discovery across my organization?
Sifflet consolidates metadata from your entire data stack into a centralized Data Catalog, making it easier for data stakeholders to discover, understand, and trust data. With features like enriched metadata, Snowflake tags, and BigQuery labels, data discovery becomes faster and more intuitive, reducing time spent searching for the right assets.






-p-500.png)
