


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Why is data observability becoming more important than just monitoring?
As data systems grow more complex with cloud infrastructure and distributed pipelines, simple monitoring isn't enough. Data observability platforms like Sifflet go further by offering data lineage tracking, anomaly detection, and root cause analysis. This helps teams not just detect issues, but truly understand and resolve them faster—saving time and avoiding costly outages.
How does Sifflet support traceability across diverse data stacks?
Traceability is a key pillar of Sifflet’s observability platform. We’ve expanded support for tools like Synapse, MicroStrategy, and Fivetran, and introduced our Universal Connector to bring in any asset, even from AI models. This makes root cause analysis and data lineage tracking more comprehensive and actionable.
What’s new in Sifflet’s data quality monitoring capabilities?
We’ve rolled out several powerful updates to help you monitor data quality more effectively. One highlight is our new referential integrity monitor, which ensures logical consistency between tables, like verifying that every order has a valid customer ID. We’ve also enhanced our Data Quality as Code framework, making it easier to scale monitor creation with templates and for-loops.
Why is embedding observability tools at the orchestration level important?
Embedding observability tools like Flow Stopper at the orchestration level gives teams visibility into pipeline health before data hits production. This kind of proactive monitoring is key for maintaining data reliability and reducing downtime due to broken pipelines.
How does schema evolution impact batch and streaming data observability?
Schema evolution can introduce unexpected fields or data type changes that disrupt both batch and streaming data workflows. With proper data pipeline monitoring and observability tools, you can track these changes in real time and ensure your systems adapt without losing data quality or breaking downstream processes.
How often is the data refreshed in Sifflet's Data Sharing pipeline?
The data shared through Sifflet's optimized pipeline is refreshed every four hours. This ensures you always have timely and accurate insights for data quality monitoring, anomaly detection, and root cause analysis within your own platform.
What role did data observability play in Carrefour’s customer engagement strategy?
Data observability was crucial in maintaining high data quality for loyalty programs and marketing campaigns. With real-time metrics and anomaly detection in place, Carrefour was able to improve customer satisfaction and retention through more accurate and timely insights.
Why is this integration important for data pipeline monitoring?
Bringing Sifflet’s observability tools into Apache Airflow allows for proactive data pipeline monitoring. You get real-time metrics, anomaly detection, and data freshness checks that help you catch issues early and keep your pipelines healthy.













-p-500.png)
