Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How can inefficient SQL queries impact my data pipeline performance?
Great question! Inefficient SQL queries can lead to slow dashboards, increased ingestion latency, and even failed workloads. By optimizing your queries using best practices like proper filtering and avoiding SELECT *, you help improve data pipeline monitoring and maintain overall data reliability.
What if I use tools that aren’t natively supported by Sifflet?
No worries at all! With Sifflet’s Universal Connector API, you can integrate data from virtually any source. This flexibility means you can monitor your entire data ecosystem and maintain full visibility into your data pipeline monitoring, no matter what tools you're using.
Is there a way to use Sifflet with Terraform for better data governance?
Yes! Sifflet now offers an officially-supported Terraform provider that allows you to manage your observability setup as code. This includes configuring monitors and other Sifflet objects, which helps enforce data contracts, improve reproducibility, and strengthen data governance.
How does the Sifflet AI Assistant improve data observability at scale?
The Sifflet AI Assistant enhances data observability by automatically fine-tuning your monitoring setup using machine learning and dynamic thresholds. It continuously adapts to changes in your data pipelines, reducing false positives and ensuring accurate anomaly detection, even as your data scales globally.
Why is data lineage a pillar of Full Data Stack Observability?
At Sifflet, we consider data lineage a core part of Full Data Stack Observability because it connects data quality monitoring with data discovery. By mapping data dependencies, teams can detect anomalies faster, perform accurate root cause analysis, and maintain trust in their data pipelines.
How do organizations monitor the success of their data governance programs?
Successful data governance is measured through KPIs that tie directly to business outcomes. This includes metrics like how quickly teams can find data, how often data quality issues are caught before reaching production, and how well teams follow access protocols. Observability tools help track these indicators by providing real-time metrics and alerting on governance-related issues.
How does Sifflet help with root cause analysis in Firebolt environments?
Sifflet makes root cause analysis easy by providing complete data lineage tracking for your Firebolt assets. You can trace issues back to their source, whether it's an upstream dbt model or a downstream Looker dashboard, all within a single platform.
Can data lineage help with regulatory compliance such as GDPR?
Absolutely. Data lineage supports data governance by mapping data flows and access rights, which is essential for compliance with regulations like GDPR. Features like automated PII propagation help teams monitor sensitive data and enforce security observability best practices.
Still have questions?