Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What are Sentinel, Sage, and Forge, and how do they enhance data observability?
Sentinel, Sage, and Forge are Sifflet’s new AI agents designed to supercharge your data observability efforts. Sentinel proactively recommends monitoring strategies, Sage accelerates root cause analysis by remembering system history, and Forge guides your team with actionable fixes. Together, they help teams reduce alert fatigue and improve data reliability at scale.
How did Adaptavist reduce data downtime with Sifflet?
Adaptavist used Sifflet’s observability platform to map the blast radius of changes, alert users before issues occurred, and validate results pre-production. This proactive approach to data pipeline monitoring helped them eliminate downtime during a major refactor and shift from 'merge and pray' to a risk-aware, observability-first workflow.
Why is it important to align KPIs with data team objectives?
Aligning KPIs with your data team’s goals is essential for clarity and motivation. When everyone knows what success looks like and how it’s measured, it creates a sense of purpose. Tools that support data quality monitoring and metrics collection can help track those KPIs effectively and ensure your team is on the right path.
What kind of alerts can I expect from Sifflet when using it with Firebolt?
With Sifflet, you’ll receive real-time alerts for any data quality issues detected in your Firebolt warehouse. These alerts are powered by advanced anomaly detection and data freshness checks, helping you stay ahead of potential problems.
Why is data freshness so important for data reliability?
Great question! Data freshness is a key part of data reliability because decisions are only as good as the data they're based on. If your data is outdated or delayed, it can lead to flawed insights and missed opportunities. That's why data freshness checks are a foundational element of any strong data observability strategy.
How does Sifflet support reverse ETL and operational analytics?
Sifflet enhances reverse ETL workflows by providing data observability dashboards and real-time monitoring. Our platform ensures your data stays fresh, accurate, and actionable by enabling root cause analysis, data lineage tracking, and proactive anomaly detection across your entire pipeline.
How can data observability support a strong data governance strategy?
Data observability complements data governance by continuously monitoring data pipelines for issues like data drift, freshness problems, or anomalies. With an observability platform like Sifflet, teams can proactively detect and resolve data quality issues, enforce data validation rules, and gain visibility into pipeline health. This real-time insight helps governance policies work in practice, not just on paper.
Can I use Sifflet’s data observability tools with other platforms besides Airbyte?
Absolutely! While we’ve built a powerful solution for Airbyte, our Declarative Lineage API is flexible enough to support other platforms like Kafka, Census, Hightouch, and Talend. You can use our sample Python scripts to integrate lineage from these tools and enhance your overall data observability strategy.
Still have questions?