Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can historical data access really boost data consumer confidence?
Absolutely! When data consumers can see historical performance through data observability dashboards, it builds transparency and trust. They’re more likely to rely on your data if they know it’s been consistently accurate and well-maintained over time.
What role does Sifflet’s data catalog play in observability?
Sifflet’s data catalog acts as the central hub for your data ecosystem, enriched with metadata and classification tags. This foundation supports cloud data observability by giving teams full visibility into their assets, enabling better data lineage tracking, telemetry instrumentation, and overall observability platform performance.
How does Sifflet enhance data lineage tracking for dbt projects?
Sifflet enriches your data lineage tracking by visually mapping out your dbt models and how they connect across different projects. This is especially useful for teams managing multiple dbt repositories, as Sifflet brings everything together into a clear, centralized lineage view that supports root cause analysis and proactive monitoring.
What exactly is data freshness, and why does it matter so much in data observability?
Data freshness refers to how current your data is relative to the real-world events it's meant to represent. In data observability, it's one of the most critical metrics because even accurate data can lead to poor decisions if it's outdated. Whether you're monitoring financial trades or patient records, stale data can have serious business consequences.
How does Sifflet support data teams in improving data pipeline monitoring?
Sifflet’s observability platform offers powerful features like anomaly detection, pipeline error alerting, and data freshness checks. We help teams stay on top of their data workflows and ensure SLA compliance with minimal friction. Come chat with us at Booth Y640 to learn more!
How does Sifflet help identify performance bottlenecks in dbt models?
Sifflet's dbt runs tab offers deep insights into model execution, cost, and runtime, making it easy to spot inefficiencies. You can also use historical performance data to set up custom dashboards and proactive monitors. This helps with capacity planning and ensures your data pipelines stay optimized and cost-effective.
Why is data freshness so important for data reliability?
Great question! Data freshness is a key part of data reliability because decisions are only as good as the data they're based on. If your data is outdated or delayed, it can lead to flawed insights and missed opportunities. That's why data freshness checks are a foundational element of any strong data observability strategy.
How can integration and connectivity improve data pipeline monitoring?
When a data catalog integrates seamlessly with your databases, cloud storage, and data lakes, it enhances your ability to monitor data pipelines in real time. This connectivity supports better ingestion latency tracking and helps maintain a reliable observability platform.
Still have questions?