


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What makes Sifflet's approach to data pipeline monitoring unique?
We take a holistic, end-to-end approach to data pipeline monitoring. By collecting telemetry across the entire data stack and automatically tracking field-level data lineage, we empower teams to quickly identify issues and understand their downstream impact, making incident response and resolution much more efficient.
Why is data quality monitoring crucial for AI-readiness, according to Dailymotion’s journey?
Dailymotion emphasized that high-quality, well-documented, and observable data is essential for AI readiness. Data quality monitoring ensures that AI systems are trained on accurate and reliable inputs, which is critical for producing trustworthy outcomes.
What kinds of data does Shippeo monitor to support real-time metrics?
Shippeo tracks critical operational data like order volume, GPS positions, and platform activity. With Sifflet, they monitor ingestion latency and data freshness to ensure that metrics powering dashboards and customer reports are always up to date.
Will Sifflet cover any upcoming trends in data observability?
For sure! Our CEO, Salma Bakouk, will be speaking about the top data trends to watch in 2025, including how GenAI and advanced anomaly detection are shaping the future of observability platforms. You’ll walk away with actionable insights for your data strategy.
What makes a data observability platform truly end-to-end?
Great question! A true data observability platform doesn’t stop at just detecting issues. It guides you through the full lifecycle: monitoring, alerting, triaging, investigating, and resolving. That means it should handle everything from data quality monitoring and anomaly detection to root cause analysis and impact-aware alerting. The best platforms even help prevent issues before they happen by integrating with your data pipeline monitoring tools and surfacing business context alongside technical metrics.
How does a data observability platform help improve inventory accuracy?
A data observability platform continuously monitors inventory data using real-time metrics and anomaly detection. It compares RFID scans with POS transactions, flags inconsistencies, and tracks key inventory KPIs. This helps retailers maintain more accurate stock levels and reduce shrinkage or overstocking.
Why is declarative lineage important for data observability?
Declarative lineage is a game changer because it provides a clear, structured view of how data flows through your systems. This visibility is key for effective data pipeline monitoring, root cause analysis, and data governance. With Sifflet’s approach, you can track upstream and downstream dependencies and ensure your data is reliable and well-managed.
How does Sifflet's integration with dbt Core improve data observability?
Great question! By integrating with dbt Core, Sifflet enhances data observability across your entire data stack. It helps you monitor dbt test coverage, map tests to downstream dependencies using data lineage tracking, and consolidate metadata like tags and descriptions, all in one place.






-p-500.png)
