Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What does Full Data Stack Observability mean?
Full Data Stack Observability means having complete visibility into every layer of your data pipeline, from ingestion to business intelligence tools. At Sifflet, our observability platform collects signals across your entire stack, enabling anomaly detection, data lineage tracking, and real-time metrics collection. This approach helps teams ensure data reliability and reduce time spent firefighting issues.
What new investments is Sifflet making after the latest funding round?
We're excited to be investing in four key areas: enhancing our product roadmap, expanding our AI-powered capabilities, growing our North American presence, and accelerating hiring across teams. These efforts will help us continue leading in cloud data observability and better serve our growing customer base.
What’s Sifflet’s vision for data observability in 2025?
Our 2025 vision is all about pushing the boundaries of cloud data observability. We're focusing on deeper automation, AI-driven insights, and expanding our observability platform to cover everything from real-time metrics to predictive analytics monitoring. It's about making data operations more resilient, transparent, and scalable.
Can open-source ETL tools support data observability needs?
Yes, many open-source ETL tools like Airbyte or Talend can be extended to support observability features. By integrating them with a cloud data observability platform like Sifflet, you can add layers of telemetry instrumentation, anomaly detection, and alerting. This ensures your open-source stack remains robust, reliable, and ready for scale.
How does Sifflet support data quality monitoring?
Sifflet makes data quality monitoring seamless with its auto-coverage feature. It automatically suggests fields to monitor and applies rules for freshness, uniqueness, and null values. This proactive monitoring helps maintain SLA compliance and keeps your data assets trustworthy and safe to use.
What role does accessibility play in Sifflet’s UI design?
Accessibility is a core part of our design philosophy. We ensure that key indicators in our observability tools, such as data freshness checks or pipeline health statuses, are communicated using both color and iconography. This approach supports inclusive experiences for users with visual impairments, including color blindness.
How do classification tags support real-time metrics and alerting?
Classification tags help define the structure and importance of your data, which in turn makes it easier to configure real-time metrics and alerts. For example, tagging a 'country' field as low cardinality allows teams to monitor sales data by region, enabling faster anomaly detection and more actionable real-time alerts.
What should I look for when choosing a data observability platform?
Great question! When evaluating a data observability platform, it’s important to focus on real capabilities like root cause analysis, data lineage tracking, and SLA compliance rather than flashy features. Our checklist helps you cut through the noise so you can find a solution that builds trust and scales with your data needs.
Still have questions?