


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What does Sifflet plan to do with the new $18M in funding?
We're excited to use this funding to accelerate product innovation, expand our North American presence, and grow our team. Our focus will be on enhancing AI-powered capabilities, improving data pipeline monitoring, and helping customers maintain data reliability at scale.
Can I deploy Sifflet in my own environment for better control?
Absolutely! Sifflet offers both SaaS and self-managed deployment models. With the self-managed option, you can run the platform entirely within your own infrastructure, giving you full control and helping meet strict compliance and security requirements.
Can I use Sifflet to detect issues in my dbt models before they impact downstream dashboards?
Absolutely! Sifflet's real-time anomaly detection and full data lineage tracking make it easy to catch issues in your dbt models early. This proactive approach helps prevent broken dashboards and ensures data reliability across your analytics pipeline.
What should I look for when choosing a data integration tool?
Look for tools that support your data sources and destinations, offer automation, and ensure compliance. Features like schema registry integration, real-time metrics, and alerting can also make a big difference. A good tool should work seamlessly with your observability tools to maintain data quality and trust.
How does Sifflet make setting up data quality monitoring easier?
Great question! With the launch of Data-Quality-as-Code v2, Sifflet has made it much easier to create and manage monitors at scale. Whether you prefer working programmatically or through the UI, our platform now offers smoother workflows and standardized threshold settings for more intuitive data quality monitoring.
How does Sifflet support data quality monitoring at scale?
Sifflet uses AI-powered dynamic monitors and data validation rules to automate data quality monitoring across your pipelines. It also integrates with tools like Snowflake and dbt to ensure data freshness checks and schema validations are embedded into your workflows without manual overhead.
Can I customize how sensitive the alerts are in Sifflet’s Freshness Monitor?
Absolutely! Sifflet lets you adjust the sensitivity of your freshness alerts based on your specific needs. Whether you're monitoring ML pipelines or business-critical dashboards, you can fine-tune how strict the system is about detecting anomalies to ensure you're only alerted when it really matters. This is a great way to optimize your incident response automation.
Can Sifflet integrate with our existing data tools and platforms?
Absolutely! Sifflet is designed to integrate seamlessly with your current stack. We support a wide range of tools including Airflow, Snowflake, AWS Glue, and more. Our goal is to provide complete pipeline orchestration visibility and data freshness checks, all from one intuitive interface.













-p-500.png)
