Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How can organizations balance the need for data accuracy with the cost of achieving it?
That's a smart consideration! While 100% accuracy sounds ideal, it's often costly and unrealistic. A better approach is to define acceptable thresholds through data validation rules and data profiling. By using observability platforms that support threshold-based alerts and dynamic thresholding, teams can focus on what matters most without over-investing in perfection.
What can I expect from Sifflet at Big Data Paris 2024?
We're so excited to welcome you at Booth #D15 on October 15 and 16! You’ll get to experience live demos of our latest data observability features, hear real client stories like Saint-Gobain’s, and explore how Sifflet helps improve data reliability and streamline data pipeline monitoring.
Why should organizations shift from firefighting to fire prevention in their data operations?
Shifting to fire prevention means proactively addressing data health issues before they impact users. By leveraging data lineage and observability tools, teams can perform impact assessments, monitor data quality, and implement preventive strategies that reduce downtime and improve SLA compliance.
What strategies can help smaller data teams stay productive and happy?
For smaller teams, simplicity and clarity are key. Implementing lightweight data observability dashboards and using tools that support real-time alerts and Slack notifications can help them stay agile without feeling overwhelmed. Also, defining clear roles and giving access to self-service tools boosts autonomy and satisfaction.
Can Sifflet help with root cause analysis in complex data systems?
Absolutely! In early 2025, we're rolling out advanced root cause analysis tools designed to help you detect subtle anomalies and trace them back to their source. Whether the issue lies in your code, data, or pipelines, our observability platform will help you get to the bottom of it faster.
Why is smart alerting important in data observability?
Smart alerting helps your team focus on what really matters. Instead of flooding your Slack with every minor issue, a good observability tool prioritizes alerts based on business impact and data asset importance. This reduces alert fatigue and ensures the right people get notified at the right time. Look for platforms that offer customizable severity levels, real-time alerts, and integrations with your incident management tools like PagerDuty or email alerts.
How does Sifflet make setting up data quality monitoring easier?
Great question! With the launch of Data-Quality-as-Code v2, Sifflet has made it much easier to create and manage monitors at scale. Whether you prefer working programmatically or through the UI, our platform now offers smoother workflows and standardized threshold settings for more intuitive data quality monitoring.
Why is data observability so important for AI-powered organizations in 2025?
Great question! As AI continues to evolve, the quality and reliability of the data feeding those models becomes even more critical. Data observability ensures that your AI systems are powered by clean, accurate, and up-to-date data. With platforms like Sifflet, organizations can detect issues like data drift, monitor real-time metrics, and maintain data governance, all of which help AI models stay accurate and trustworthy.
Still have questions?