Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How can integration and connectivity improve data pipeline monitoring?
When a data catalog integrates seamlessly with your databases, cloud storage, and data lakes, it enhances your ability to monitor data pipelines in real time. This connectivity supports better ingestion latency tracking and helps maintain a reliable observability platform.
Is Sifflet available for VPC deployment on Google Cloud?
Yes it is! You can deploy Sifflet’s observability platform within your own private Google Cloud environment using VPC deployment, giving you full control over data governance and security.
What kind of real-time alerts can I expect with Sifflet and dbt together?
With Sifflet and dbt working together, you get real-time alerts delivered straight to your favorite tools like Slack, Microsoft Teams, or email. Whether a dbt test fails or a data anomaly is detected, your team will be notified immediately, helping you respond quickly and maintain data quality monitoring at all times.
Can I learn about real-world results from Sifflet customers at the event?
Yes, definitely! Companies like Saint-Gobain will be sharing how they’ve used Sifflet for data observability, data lineage tracking, and SLA compliance. It’s a great chance to hear how others are solving real data challenges with our platform.
How can data observability help prevent missed SLAs and unreliable dashboards?
Data observability plays a key role in SLA compliance by detecting issues like ingestion latency, schema changes, or data drift before they impact downstream users. With proper data quality monitoring and real-time metrics, you can catch problems early and keep your dashboards and reports reliable.
Can business users benefit from data observability too, or is it just for engineers?
Absolutely, business users benefit too! Sifflet's UI is built for both technical and non-technical teams. For example, our Chrome extension overlays on BI tools to show real-time metrics and data quality monitoring without needing to write SQL. It helps everyone from analysts to execs make decisions with confidence, knowing the data behind their dashboards is trustworthy.
How does data quality monitoring help improve data reliability?
Data quality monitoring is essential for maintaining trust in your data. A strong observability platform should offer features like anomaly detection, data profiling, and data validation rules. These tools help identify issues early, so you can fix them before they impact downstream analytics. It’s all about making sure your data is accurate, timely, and reliable.
How is data volume different from data variety?
Great question! Data volume is about how much data you're receiving, while data variety refers to the different types and formats of data sources. For example, a sudden drop in appointment data is a volume issue, while a new file format causing schema mismatches is a variety issue. Observability tools help you monitor both dimensions to maintain healthy pipelines.
Still have questions?