Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How can data observability help with SLA compliance and incident management?
Data observability plays a huge role in SLA compliance by enabling real-time alerts and proactive monitoring of data freshness, completeness, and accuracy. When issues occur, observability tools help teams quickly perform root cause analysis and understand downstream impacts, speeding up incident response and reducing downtime. This makes it easier to meet service level agreements and maintain stakeholder trust.
How is Sifflet rethinking root cause analysis in data observability?
Root cause analysis is a critical part of data reliability, and we’re making it smarter. Instead of manually sifting through logs or lineage graphs, Sifflet uses AI and metadata to automate root cause detection and suggest next steps. Our observability tools analyze query logs, pipeline dependencies, and usage patterns to surface the 'why' behind incidents — not just the 'what.' That means faster triage, quicker resolution, and fewer surprises downstream.
Can I deploy Sifflet in my own environment for better control?
Absolutely! Sifflet offers both SaaS and self-managed deployment models. With the self-managed option, you can run the platform entirely within your own infrastructure, giving you full control and helping meet strict compliance and security requirements.
What if I use tools that aren’t natively supported by Sifflet?
No worries at all! With Sifflet’s Universal Connector API, you can integrate data from virtually any source. This flexibility means you can monitor your entire data ecosystem and maintain full visibility into your data pipeline monitoring, no matter what tools you're using.
Why is combining dbt Core with a data observability platform like Sifflet a smart move?
Combining dbt Core with a data observability platform like Sifflet helps data teams go beyond transformation and into full-stack monitoring. It enables better root cause analysis, reduces time to resolution, and ensures your data products are trustworthy and resilient.
How can data observability support a Data as a Product (DaaP) strategy?
Data observability plays a crucial role in a DaaP strategy by ensuring that data is accurate, fresh, and trustworthy. With tools like Sifflet, businesses can monitor data pipelines in real time, detect anomalies, and perform root cause analysis to maintain high data quality. This helps build reliable data products that users can trust.
Why is it important to align KPIs with data team objectives?
Aligning KPIs with your data team’s goals is essential for clarity and motivation. When everyone knows what success looks like and how it’s measured, it creates a sense of purpose. Tools that support data quality monitoring and metrics collection can help track those KPIs effectively and ensure your team is on the right path.
How is Etam using data observability to support its 2025 strategy?
Etam is leveraging data observability as a foundational element of its 2025 data strategy. With Sifflet’s observability platform, the team can monitor data quality, detect issues early, and ensure data reliability, which helps them move faster and with more confidence across the business.
Still have questions?