Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What role does accessibility play in Sifflet’s UI design?
Accessibility is a core part of our design philosophy. We ensure that key indicators in our observability tools, such as data freshness checks or pipeline health statuses, are communicated using both color and iconography. This approach supports inclusive experiences for users with visual impairments, including color blindness.
Can I customize how sensitive the alerts are in Sifflet’s Freshness Monitor?
Absolutely! Sifflet lets you adjust the sensitivity of your freshness alerts based on your specific needs. Whether you're monitoring ML pipelines or business-critical dashboards, you can fine-tune how strict the system is about detecting anomalies to ensure you're only alerted when it really matters. This is a great way to optimize your incident response automation.
How does data observability support compliance with regulations like GDPR?
Data observability plays a key role in data governance by helping teams maintain accurate documentation, monitor data flows, and quickly detect anomalies. This proactive monitoring ensures that your data stays compliant with regulations like GDPR and HIPAA, reducing the risk of costly fines and audits.
What does it mean to treat data as a product?
Treating data as a product means prioritizing its reliability, usability, and trustworthiness—just like you would with any customer-facing product. This mindset shift is driving the need for observability platforms that support data governance, real-time metrics, and proactive monitoring across the entire data lifecycle.
How is Sifflet rethinking root cause analysis in data observability?
Root cause analysis is a critical part of data reliability, and we’re making it smarter. Instead of manually sifting through logs or lineage graphs, Sifflet uses AI and metadata to automate root cause detection and suggest next steps. Our observability tools analyze query logs, pipeline dependencies, and usage patterns to surface the 'why' behind incidents — not just the 'what.' That means faster triage, quicker resolution, and fewer surprises downstream.
Why is data lineage tracking considered a core pillar of data observability?
Data lineage tracking lets you trace data across its entire lifecycle, from source to dashboard. This visibility is essential for root cause analysis, especially when something breaks. It helps teams move from reactive firefighting to proactive prevention, which is a huge win for maintaining data reliability and meeting SLA compliance standards.
How can I detect silent failures in my data pipelines before they cause damage?
Silent failures are tricky, but with the right data observability tools, you can catch them early. Look for platforms that support real-time alerts, schema registry integration, and dynamic thresholding. These features help you monitor for unexpected changes, missing data, or drift in your pipelines. Sifflet, for example, offers anomaly detection and root cause analysis that help you uncover and fix issues before they impact your business.
What kind of health scoring does Adaptavist use for their data assets?
Adaptavist built a platform health dashboard that scores each asset based on data freshness, quality, and reliability. This kind of data profiling helps them prioritize fixes, improve root cause analysis, and ensure continued trust in their analytics pipeline observability.
Still have questions?