


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Can I customize how alerts are routed to ServiceNow from Sifflet?
Absolutely! You can customize routing based on alert metadata like domain, severity, or affected system. This ensures the right team gets notified without any manual triage, making your data pipeline monitoring more actionable and reliable.
What’s on the horizon for data observability as AI and regulations evolve?
The future of data observability is all about scale and responsibility. With AI adoption growing and regulations tightening, businesses need observability tools that can handle unstructured data, ensure SLA compliance, and support security observability. At Sifflet, we're already helping customers monitor ML models and enforce data contracts, and we're excited about building self-healing pipelines and extending observability to new data types.
How does Sifflet help scale dbt environments without compromising data quality?
Great question! Sifflet enhances your dbt environment by adding a robust data observability layer that enforces standards, monitors key metrics, and ensures data quality monitoring across thousands of models. With centralized metadata, automated monitors, and lineage tracking, Sifflet helps teams avoid the usual pitfalls of scaling like ownership ambiguity and technical debt.
Can I monitor my BigQuery data with Sifflet?
Absolutely! Sifflet’s observability tools are fully compatible with Google BigQuery, so you can perform data quality monitoring, data lineage tracking, and anomaly detection right where your data lives.
How does Sifflet help teams improve data accessibility across the organization?
Great question! Sifflet makes data accessibility a breeze by offering intuitive search features and AI-generated metadata, so both technical and non-technical users can easily find and understand the data they need. This helps break down silos and supports better collaboration, which is a key component of effective data observability.
How can executive sponsorship help scale data governance efforts?
Executive sponsorship is essential for scaling data governance beyond grassroots efforts. As organizations mature, top-down support ensures proper budget allocation for observability tools, data pipeline monitoring, and team resources. When leaders are personally invested, it helps shift the mindset from reactive fixes to proactive data quality and governance practices.
Can I use data monitoring and data observability together?
Absolutely! In fact, data monitoring is often a key feature within a broader data observability solution. At Sifflet, we combine traditional monitoring with advanced capabilities like data profiling, pipeline health dashboards, and data drift detection so you get both alerts and insights in one place.
How does data quality monitoring help improve data reliability?
Data quality monitoring is essential for maintaining trust in your data. A strong observability platform should offer features like anomaly detection, data profiling, and data validation rules. These tools help identify issues early, so you can fix them before they impact downstream analytics. It’s all about making sure your data is accurate, timely, and reliable.













-p-500.png)
