Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can non-technical users benefit from Sifflet’s Data Catalog?
Yes, definitely! Sifflet is designed to be user-friendly for both technical and business users. With features like AI-driven description recommendations and easy-to-navigate asset pages, even non-technical users can confidently explore and understand the data they need.
Why is data observability important for data transformation pipelines?
Great question! Data observability is essential for transformation pipelines because it gives teams visibility into data quality, pipeline performance, and transformation accuracy. Without it, errors can go unnoticed and create downstream issues in analytics and reporting. With a solid observability platform, you can detect anomalies, track data freshness, and ensure your transformations are aligned with business goals.
How does Sifflet help with real-time anomaly detection?
Sifflet uses ML-based monitors and an AI-driven assistant to detect anomalies in real time. Whether it's data drift detection, schema changes, or unexpected drops in metrics, our platform ensures you catch issues early and resolve them fast with built-in root cause analysis and incident reporting.
Can I add non-integrated tools like Salesforce or HubSpot to my data catalog?
Absolutely! With Sifflet’s declarative framework, you can programmatically declare assets from tools like Salesforce, SAP, or HubSpot, even if they aren’t natively integrated. This helps you maintain a complete and unified view of your data ecosystem for better data governance.
How can data observability support a strong data governance strategy?
Data observability complements data governance by continuously monitoring data pipelines for issues like data drift, freshness problems, or anomalies. With an observability platform like Sifflet, teams can proactively detect and resolve data quality issues, enforce data validation rules, and gain visibility into pipeline health. This real-time insight helps governance policies work in practice, not just on paper.
What is the MCP Server and how does it help with data observability?
The MCP (Model Context Protocol) Server is a new interface that lets you interact with Sifflet directly from your development environment. It's designed to make data observability more seamless by allowing you to query assets, review incidents, and trace data lineage without leaving your IDE or notebook. This helps streamline your workflow and gives you real-time visibility into pipeline health and data quality.
What does it mean to treat data as a product?
Treating data as a product means managing data with the same care and strategy as a traditional product. It involves packaging, maintaining, and delivering high-quality data that serves a specific purpose or audience. This approach improves data reliability and makes it easier to monetize or use for strategic decision-making.
What is data ingestion and why is it so important for modern businesses?
Data ingestion is the process of collecting and loading data from various sources into a central system like a data lake or warehouse. It's the first step in your data pipeline and is critical for enabling real-time metrics, analytics, and operational decision-making. Without reliable ingestion, your downstream analytics and data observability efforts can quickly fall apart.
Still have questions?