Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What kind of data quality monitoring features does Sifflet Insights offer?
Sifflet Insights offers features like real-time alerts, incident tracking, and access to metadata through your Data Catalog. These capabilities support proactive data quality monitoring and streamline root cause analysis when issues arise.
How does MCP support data quality monitoring in modern observability platforms?
MCP helps LLMs become active participants in data quality monitoring by giving them access to structured resources like schema definitions, data validation rules, and profiling metrics. At Sifflet, we use this to detect anomalies, enforce data contracts, and ensure SLA compliance more effectively.
What’s the first step when building a modern data team from scratch?
The very first step is to set clear objectives that align with your company’s level of data maturity and business needs. This means involving stakeholders from different departments and deciding whether your focus is on exploratory analysis, business intelligence, or innovation through AI and ML. These goals will guide your choices in data stack, platform, and hiring.
What are some of the latest technologies integrated into Sifflet's observability tools?
We've been exploring and integrating a variety of cutting-edge technologies, including dynamic thresholding for anomaly detection, data profiling tools, and telemetry instrumentation. These tools help enhance our pipeline health dashboard and improve transparency in data pipelines.
Why is aligning data initiatives with business objectives important for Etam?
At Etam, every data project begins with the question, 'How does this help us reach our OKRs?' This alignment ensures that data initiatives are directly tied to business impact, improving sponsorship and fostering collaboration across departments. It's a great example of business-aligned data strategy in action.
What should I look for when choosing a data integration tool?
Look for tools that support your data sources and destinations, offer automation, and ensure compliance. Features like schema registry integration, real-time metrics, and alerting can also make a big difference. A good tool should work seamlessly with your observability tools to maintain data quality and trust.
What role does accessibility play in Sifflet’s UI design?
Accessibility is a core part of our design philosophy. We ensure that key indicators in our observability tools, such as data freshness checks or pipeline health statuses, are communicated using both color and iconography. This approach supports inclusive experiences for users with visual impairments, including color blindness.
What kinds of metrics can retailers track with advanced observability tools?
Retailers can track a wide range of metrics such as inventory health, stock obsolescence risks, carrying costs, and dynamic safety stock levels. These observability dashboards offer time-series analysis and predictive insights that support better decision-making and improve overall data reliability.
Still have questions?