Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Is there a way to use Sifflet with Terraform for better data governance?
Yes! Sifflet now offers an officially-supported Terraform provider that allows you to manage your observability setup as code. This includes configuring monitors and other Sifflet objects, which helps enforce data contracts, improve reproducibility, and strengthen data governance.
What is data governance and why does it matter for modern businesses?
Data governance is a framework of policies, roles, and processes that ensure data is accurate, secure, and used responsibly across an organization. It brings clarity and accountability to data management, helping teams trust the data they use, stay compliant with regulations, and make confident decisions. When paired with data observability tools, governance ensures data remains reliable and actionable at scale.
What can I expect from Sifflet at Big Data Paris 2024?
We're so excited to welcome you at Booth #D15 on October 15 and 16! You’ll get to experience live demos of our latest data observability features, hear real client stories like Saint-Gobain’s, and explore how Sifflet helps improve data reliability and streamline data pipeline monitoring.
How does the updated lineage graph help with root cause analysis?
By merging dbt model nodes with dataset nodes, our streamlined lineage graph removes clutter and highlights what really matters. This cleaner view enhances root cause analysis by letting you quickly trace issues back to their source with fewer distractions and more context.
What does it mean to treat data as a product?
Treating data as a product means managing data with the same care and strategy as a traditional product. It involves packaging, maintaining, and delivering high-quality data that serves a specific purpose or audience. This approach improves data reliability and makes it easier to monetize or use for strategic decision-making.
What’s the difference between technical and business data quality?
That's a great distinction to understand! Technical data quality focuses on things like accuracy, completeness, and consistency—basically, whether the data is structurally sound. Business data quality, on the other hand, asks if the data actually supports how your organization defines success. For example, a report might be technically correct but still misleading if it doesn’t reflect your current business model. A strong data governance framework helps align both dimensions.
What role does data governance play in a data observability platform?
Data governance is a core component of any robust data observability solution. Look for platforms that offer features like audit logging, access controls, and encryption. These capabilities help ensure your organization stays compliant with regulations like GDPR, while also protecting sensitive data and maintaining transparency across teams.
What kind of monitoring capabilities does Sifflet offer out of the box?
Sifflet comes with a powerful library of pre-built monitors for data profiling, data freshness checks, metrics health, and more. These templates are easily customizable, supporting both batch data observability and streaming data monitoring, so you can tailor them to your specific data pipelines.
Still have questions?