


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
How can I track the success of my data team?
Define clear success KPIs that support ROI, such as improvements in SLA compliance, reduction in ingestion latency, or increased data reliability. Using data observability dashboards and pipeline health metrics can help you monitor progress and communicate value to stakeholders. It's also important to set expectations early and maintain strong internal communication.
How can I prevent schema changes from breaking my data pipelines?
You can prevent schema-related breakages by using data observability tools that offer real-time schema drift detection and alerting. These tools help you catch changes early, validate against data contracts, and maintain SLA compliance across your data pipelines.
Is Sifflet suitable for business users as well as engineers?
Absolutely! Sifflet’s user-friendly interface and clear data asset indicators make it easy for business users to find and trust the right data. With features like visual data discovery and real-time metrics, it bridges the gap between technical teams and business stakeholders.
What kind of visibility does Sifflet provide for Airflow DAGs?
Sifflet offers a clear view of DAG run statuses and their potential impact on the rest of your data pipeline. Combined with data lineage tracking, it gives you full transparency, making root cause analysis and incident response much easier.
Why are data consumers becoming more involved in observability decisions?
We’re seeing a big shift where data consumers—like analysts and business users—are finally getting a seat at the table. That’s because data observability impacts everyone, not just engineers. When trust in data is operationalized, it boosts confidence across the business and turns data teams into value creators.
What’s the difference between data distribution and data lineage tracking?
Great distinction! Data distribution shows you how values are spread across a dataset, while data lineage tracking helps you trace where that data came from and how it’s moved through your pipeline. Both are essential for root cause analysis, but they solve different parts of the puzzle in a robust observability platform.
What makes Sifflet a strong alternative to Monte Carlo for data observability?
Sifflet stands out as a modern data observability platform that combines AI-powered monitoring with business context. Unlike Monte Carlo, Sifflet offers no-code monitor creation, dynamic alerting with impact insights, and real-time data lineage tracking. It's designed for both technical and business users, making it easier for teams to collaborate and maintain data reliability across the organization.
What are some best practices for ensuring SLA compliance in data pipelines?
To stay on top of SLA compliance, it's important to define clear service level objectives (SLOs), monitor data freshness checks, and set up real-time alerts for anomalies. Tools that support automated incident response and pipeline health dashboards can help you detect and resolve issues quickly. At Sifflet, we recommend integrating observability tools that align both technical and business metrics to maintain trust in your data.













-p-500.png)
