Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Can schema issues affect SLA compliance in real-time analytics?
Absolutely. When schema changes go undetected, they can cause delays, errors, or data loss that violate your SLA commitments. Real-time metrics and schema monitoring are essential for maintaining SLA compliance and keeping your analytics pipeline observability strong.
Why should data alerts live in ServiceNow?
If your team already uses ServiceNow for incident management, having your data alerts show up there means fewer missed issues and faster resolution times. It brings transparency to your data pipelines and supports better data governance and trust.
What is the difference between data monitoring and data observability?
Great question! Data monitoring is like your car's dashboard—it alerts you when something goes wrong, like a failed pipeline or a missing dataset. Data observability, on the other hand, is like being the driver. It gives you a full understanding of how your data behaves, where it comes from, and how issues impact downstream systems. At Sifflet, we believe in going beyond alerts to deliver true data observability across your entire stack.
Can observability platforms help AI systems make better decisions with data?
Absolutely. AI systems need more than just schemas—they need context. Observability platforms like Sifflet provide machine-readable trust signals, data freshness checks, and reliability scores through APIs. This allows autonomous agents to assess data quality in real time and make smarter decisions without relying on outdated documentation.
Why is data observability important during the data integration process?
Data observability is key during data integration because it helps detect issues like schema changes or broken APIs early on. Without it, bad data can flow downstream, impacting analytics and decision-making. At Sifflet, we believe observability should start at the source to ensure data reliability across the whole pipeline.
Can Sifflet help with root cause analysis when data issues arise?
Absolutely! Sifflet’s field-level data lineage tracking lets you trace data issues from BI dashboards all the way back to source systems. Its AI agent, Sage, even recalls past incidents to suggest likely causes, making root cause analysis faster and more accurate for data engineers and analysts alike.
Can business users benefit from data observability too, or is it just for engineers?
Absolutely, business users benefit too! Sifflet's UI is built for both technical and non-technical teams. For example, our Chrome extension overlays on BI tools to show real-time metrics and data quality monitoring without needing to write SQL. It helps everyone from analysts to execs make decisions with confidence, knowing the data behind their dashboards is trustworthy.
What types of metadata are captured in a modern data catalog?
Modern data catalogs capture four key types of metadata: technical (schemas, formats), business (definitions, KPIs), operational (usage patterns, SLA compliance), and governance (access controls, data classifications). These layers work together to support data quality monitoring and transparency in data pipelines.
Still have questions?