


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Why are data consumers becoming more involved in observability decisions?
We’re seeing a big shift where data consumers—like analysts and business users—are finally getting a seat at the table. That’s because data observability impacts everyone, not just engineers. When trust in data is operationalized, it boosts confidence across the business and turns data teams into value creators.
Why is full-stack visibility important in data pipelines?
Full-stack visibility is key to understanding how data moves across your systems. With a data observability tool, you get data lineage tracking and metadata insights, which help you pinpoint bottlenecks, track dependencies, and ensure your data is accurate from source to destination.
How does Sifflet help optimize Data as a Product initiatives?
Sifflet enhances DaaP initiatives by providing comprehensive data observability dashboards, real-time metrics, and anomaly detection. It streamlines data pipeline monitoring and supports proactive data quality checks, helping teams ensure their data products are accurate, well-governed, and ready for use or monetization.
Can data lineage help with regulatory compliance like GDPR?
Absolutely. Governance lineage, a key type of data lineage, tracks ownership, access controls, and data classifications. This makes it easier to demonstrate compliance with regulations like GDPR and SOX by showing how sensitive data is handled across your stack. It's a critical component of any data governance strategy and helps reduce audit preparation time.
What’s next for Sifflet’s metrics observability capabilities?
We’re expanding support to more BI and transformation tools beyond Looker, and enhancing our ML-based monitoring to group business metrics by domain. This will improve consistency and make it even easier for users to explore metrics across the semantic layer.
How does data observability support AI and machine learning initiatives?
AI models are only as good as the data they’re trained on. With data observability, you can ensure data quality, detect data drift, and enforce validation rules, all of which are critical for reliable AI outcomes. Sifflet helps you maintain trust in your data so you can confidently scale your ML and predictive analytics efforts.
How does Kubernetes help with container orchestration?
Kubernetes makes it easier to manage large-scale containerized applications by automating deployment, scaling, and operations. It's a powerful observability tool that supports real-time metrics collection, resource utilization tracking, and pipeline orchestration visibility, helping teams stay on top of their data pipelines.
What benefits does end-to-end data lineage offer my team?
End-to-end data lineage helps your team perform accurate impact assessments and faster root cause analysis. By connecting declared and built-in assets, you get full visibility into upstream and downstream dependencies, which is key for data reliability and operational intelligence.