


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
How does MCP improve root cause analysis in modern data systems?
MCP empowers LLMs to use structured inputs like logs and pipeline metadata, making it easier to trace issues across multiple steps. This structured interaction helps streamline root cause analysis, especially in complex environments where traditional observability tools might fall short. At Sifflet, we’re integrating MCP to enhance how our platform surfaces and explains data incidents.
What role does data lineage tracking play in data observability?
Data lineage tracking is a key part of data observability because it helps you understand where your data comes from and how it changes over time. With clear lineage, teams can perform faster root cause analysis and collaborate better across business and engineering, which is exactly what platforms like Sifflet enable.
Is Sifflet Insights easy to set up with my existing tools?
Yes, onboarding is seamless. You can quickly integrate Sifflet Insights with your existing BI tools and start receiving real-time metrics and alerts. It’s designed to enhance efficiency and support incident response automation without disrupting your current workflows.
What sessions is Sifflet hosting at Big Data LDN?
We’ve got an exciting lineup! Join us for talks on building trust through data observability, monitoring and tracing data assets at scale, and transforming data skepticism into collaboration. Don’t miss our session on how to unlock the power of data observability for your organization.
Will Sifflet cover any upcoming trends in data observability?
For sure! Our CEO, Salma Bakouk, will be speaking about the top data trends to watch in 2025, including how GenAI and advanced anomaly detection are shaping the future of observability platforms. You’ll walk away with actionable insights for your data strategy.
Why is using WHERE instead of HAVING so important for performance?
Using WHERE instead of HAVING when not working with GROUP BY clauses is crucial because WHERE filters data earlier in the query execution. This reduces the amount of data processed, which improves query speed and supports better metrics collection in your observability platform.
What kind of health scoring does Adaptavist use for their data assets?
Adaptavist built a platform health dashboard that scores each asset based on data freshness, quality, and reliability. This kind of data profiling helps them prioritize fixes, improve root cause analysis, and ensure continued trust in their analytics pipeline observability.
Can I trust the data I find in the Sifflet Data Catalog?
Absolutely! Thanks to Sifflet’s built-in data quality monitoring, you can view real-time metrics and health checks directly within the Data Catalog. This gives you confidence in the reliability of your data before making any decisions.













-p-500.png)
