Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How does Sifflet stand out among other data observability tools?
Sifflet takes a unique approach by addressing data reliability as both an engineering and business challenge. Our observability platform offers end-to-end coverage, business context, and a collaboration layer that aligns technical teams with strategic outcomes, making it easier to maintain analytics and AI-ready data.
Can I see how a business metric is calculated in Sifflet?
Absolutely! With Sifflet’s data lineage tracking, users can view the full column-level lineage from ingestion to consumption. This transparency helps users understand how each metric is computed and how it relates to other data or metrics in the pipeline.
Why is integration with my existing tools important for observability?
A good observability platform should fit right into your current stack. That means supporting tools like dbt, Airflow, and your cloud infrastructure. Seamless integration ensures better pipeline orchestration visibility and makes it easier to act on data issues without disrupting your workflows.
What’s the best way to manage a data catalog over time?
To manage a data catalog effectively, assign clear ownership through data stewards, enforce consistent naming conventions, and schedule regular metadata reviews. For even more impact, connect it with your observability platform to monitor data quality and lineage in real time, ensuring your catalog stays accurate and actionable.
What makes debugging data pipelines so time-consuming, and how can observability help?
Debugging complex pipelines without the right tools can feel like finding a needle in a haystack. A data observability platform simplifies root cause analysis by providing detailed telemetry and pipeline health dashboards, so you can quickly identify where things went wrong and fix them faster.
How has AI changed the way companies think about data quality monitoring?
AI has definitely raised the stakes. As Salma shared on the Joe Reis Show, executives are being asked to 'do AI,' but many still struggle with broken pipelines. That’s why data quality monitoring and robust data observability are now seen as prerequisites for scaling AI initiatives effectively.
How does Sifflet help Adaptavist detect issues before they impact stakeholders?
Sifflet enables real-time metrics and data freshness checks that surface anomalies before they escalate. With features like alerting, lineage tracking, and pre-prod validation, teams at Adaptavist can spot and fix problems early, reducing surprise outages and improving SLA compliance.
What makes Sifflet stand out among the best data observability tools in 2025?
Great question! Sifflet shines because it treats data observability as both an engineering and a business challenge. Our platform offers full end-to-end coverage, strong business context, and a collaboration layer that helps teams resolve issues faster. Plus, with enterprise-grade security and scalability, Sifflet is built to grow with your data needs.
Still have questions?