


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Why is data observability so important for modern data teams?
Great question! Data observability is essential because it gives teams full visibility into the health of their data pipelines. Without it, small issues can quickly snowball into major incidents, like broken dashboards or faulty machine learning models. At Sifflet, we help you catch problems early with real-time metrics and proactive monitoring, so your team can focus on creating insights, not putting out fires.
What are some key benefits of using an observability platform like Sifflet?
Using an observability platform like Sifflet brings several benefits: real-time anomaly detection, proactive incident management, improved SLA compliance, and better data governance. By combining metrics, metadata, and lineage, we help teams move from reactive data quality monitoring to proactive, scalable observability that supports reliable, data-driven decisions.
What’s coming next for dbt integration in Sifflet?
We’re just getting started! Soon, you’ll be able to monitor dbt run performance and resource utilization, define monitors in your dbt YAML files, and use custom metadata even more dynamically. These updates will further enhance your cloud data observability and make your workflows even more efficient.
What does Full Data Stack Observability mean?
Full Data Stack Observability means having complete visibility into every layer of your data pipeline, from ingestion to business intelligence tools. At Sifflet, our observability platform collects signals across your entire stack, enabling anomaly detection, data lineage tracking, and real-time metrics collection. This approach helps teams ensure data reliability and reduce time spent firefighting issues.
What’s Sifflet’s vision for data observability in 2025?
Our 2025 vision is all about pushing the boundaries of cloud data observability. We're focusing on deeper automation, AI-driven insights, and expanding our observability platform to cover everything from real-time metrics to predictive analytics monitoring. It's about making data operations more resilient, transparent, and scalable.
What can I expect from Sifflet’s upcoming webinar?
Join us on January 22nd for a deep dive into Sifflet’s 2024 highlights and a preview of what’s ahead in 2025. We’ll cover innovations in data observability, including real-time metrics, faster incident resolution, and the upcoming Sifflet AI Agent. It’s the perfect way to kick off the year with fresh insights and inspiration!
How does Sifflet help with real-time anomaly detection?
Sifflet uses ML-based monitors and an AI-driven assistant to detect anomalies in real time. Whether it's data drift detection, schema changes, or unexpected drops in metrics, our platform ensures you catch issues early and resolve them fast with built-in root cause analysis and incident reporting.
How does data observability support data governance and compliance?
If you're in a regulated industry or handling sensitive data, observability tools can help you stay compliant. They offer features like audit logging, data freshness checks, and schema validation, which support strong data governance and help ensure SLA compliance.