Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How does Sifflet’s dbt Impact Analysis improve data pipeline monitoring?
By surfacing impacted tables, dashboards, and other assets directly in GitHub or GitLab, Sifflet’s dbt Impact Analysis gives teams real-time visibility into how changes affect the broader data pipeline. This supports better data pipeline monitoring and helps maintain data reliability.
What are some common data quality issues that can be prevented with the right tools?
Common issues like schema changes, missing values, and data drift can all be caught early with effective data quality monitoring. Tools that offer features like threshold-based alerts, data freshness checks, and pipeline health dashboards make it easier to prevent these problems before they affect downstream systems.
How does Sifflet use AI to improve data classification?
Sifflet leverages machine learning to provide AI Suggestions for classification tags, helping teams automatically identify and label key data characteristics like PII or low cardinality. This not only streamlines data management but also enhances data quality monitoring by reducing manual effort and human error.
What is metrics observability and why does it matter for business users?
Metrics observability helps business users trust and understand the KPIs they rely on by making it easy to trace how metrics are defined, calculated, and connected to other data assets. With Sifflet’s observability platform, teams can ensure their business metrics are accurate, reliable, and aligned across departments.
What role does Sifflet’s data catalog play in observability?
Sifflet’s data catalog acts as the central hub for your data ecosystem, enriched with metadata and classification tags. This foundation supports cloud data observability by giving teams full visibility into their assets, enabling better data lineage tracking, telemetry instrumentation, and overall observability platform performance.
How do JOIN strategies affect query execution and data observability?
JOINs can be very resource-intensive if not used correctly. Choosing the right JOIN type and placing conditions in the ON clause helps reduce unnecessary data processing, which is key for effective data observability and real-time metrics tracking.
How does Sifflet help close the observability gap for Airbyte pipelines?
Great question! Sifflet bridges the observability gap for Airbyte by using our Declarative Lineage API and a custom Python script. This allows you to capture complete data lineage from Airbyte and ingest it into Sifflet, giving you full visibility into your pipelines and enabling better root cause analysis and data quality monitoring.
Can reverse ETL help with data quality monitoring?
Absolutely. By integrating reverse ETL with a strong observability platform like Sifflet, you can implement data quality monitoring throughout the pipeline. This includes real-time alerts for sync issues, data freshness checks, and anomaly detection to ensure your operational data remains trustworthy and accurate.
Still have questions?