


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
What’s coming next for the Sifflet AI Assistant?
We’re excited about what’s ahead. Soon, the Sifflet AI Assistant will allow non-technical users to create monitors using natural language, expand monitoring coverage automatically, and provide deeper insights into resource utilization and capacity planning to support scalable data observability.
Can Sifflet integrate with my existing data stack for seamless data pipeline monitoring?
Absolutely! One of Sifflet’s strengths is its seamless integration across your existing data stack. Whether you're working with tools like Airflow, Snowflake, or Kafka, Sifflet helps you monitor your data pipelines without needing to overhaul your infrastructure.
Is Sifflet's Data Sharing compatible with cloud data platforms like Snowflake or BigQuery?
Yes, it is! Sifflet currently supports Data Sharing to Snowflake, BigQuery, and S3, with more destinations on the way. This makes it easy to integrate Sifflet into your cloud data observability strategy and leverage your existing infrastructure for deeper insights and proactive monitoring.
Can Sifflet support SLA compliance and data governance goals?
Absolutely! Sifflet supports SLA compliance through proactive data quality monitoring and real-time metrics. Its deep metadata integrations and lineage tracking also help organizations enforce data governance policies and maintain trust across the entire data ecosystem.
What are some best practices Hypebeast followed for successful data observability implementation?
Hypebeast focused on phased deployment of observability tools, continuous training for all data users, and a strong emphasis on data quality monitoring. These strategies helped ensure smooth adoption and long-term success with their observability platform.
What are the key features to look for in a data observability platform?
When evaluating an observability platform, look for strong data lineage tracking, real-time metrics collection, anomaly detection capabilities, and broad integrations across your data stack. Features like field-level lineage, ease of setup, and user-friendly dashboards can make a big difference too. At Sifflet, we believe observability should empower both technical and business users with the context they need to trust and act on data.
What’s coming next for dbt integration in Sifflet?
We’re just getting started! Soon, you’ll be able to monitor dbt run performance and resource utilization, define monitors in your dbt YAML files, and use custom metadata even more dynamically. These updates will further enhance your cloud data observability and make your workflows even more efficient.
What improvements has Sifflet made to incident management workflows?
We’ve introduced Augmented Resolution to help teams group related alerts into a single collaborative ticket, streamlining incident response. Plus, with integrations into your ticketing systems, Sifflet ensures that data issues are tracked, communicated, and resolved efficiently. It’s all part of our mission to boost data reliability and support your operational intelligence.













-p-500.png)
