Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How does Sifflet's integration with dbt Core improve data observability?
Great question! By integrating with dbt Core, Sifflet enhances data observability across your entire data stack. It helps you monitor dbt test coverage, map tests to downstream dependencies using data lineage tracking, and consolidate metadata like tags and descriptions, all in one place.
How does data lineage tracking help with root cause analysis in data integration?
Data lineage tracking gives visibility into how data flows from source to destination, making it easier to pinpoint where issues originate. This is essential for root cause analysis, especially when dealing with complex integrations across multiple systems. At Sifflet, we see data lineage as a cornerstone of any observability platform.
How does field-level lineage improve root cause analysis in observability platforms like Sifflet?
Field-level lineage allows users to trace issues down to individual columns across tables, making it easier to pinpoint where a problem originated. This level of detail enhances root cause analysis and impact assessment, helping teams resolve incidents quickly and maintain trust in their data.
Why are retailers turning to data observability to manage inventory better?
Retailers are adopting data observability to gain real-time visibility into inventory across all channels, reduce stock inaccuracies, and avoid costly misalignments between supply and demand. With data observability tools, they can proactively detect issues, monitor data quality, and improve operational efficiency across their data pipelines.
Why is embedding observability tools at the orchestration level important?
Embedding observability tools like Flow Stopper at the orchestration level gives teams visibility into pipeline health before data hits production. This kind of proactive monitoring is key for maintaining data reliability and reducing downtime due to broken pipelines.
How does Sifflet help detect and prevent data drift in AI models?
Sifflet is designed to monitor subtle changes in data distributions, which is key for data drift detection. This helps teams catch shifts in data that could negatively impact AI model performance. By continuously analyzing incoming data and comparing it to historical patterns, Sifflet ensures your models stay aligned with the most relevant and reliable inputs.
How does Sifflet's ServiceNow integration help with incident response automation?
Great question! With our new ServiceNow integration, Sifflet can automatically create incidents from any data alert, helping your team respond faster and stay on top of critical issues. It's a big win for incident response automation and keeps your data observability workflows smooth and efficient.
Why is Sifflet focusing on AI agents for observability now?
With data stacks growing rapidly and teams staying the same size or shrinking, proactive monitoring is more important than ever. These AI agents bring memory, reasoning, and automation into the observability platform, helping teams scale their efforts with confidence and clarity.
Still have questions?