


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
How can organizations balance the need for data accuracy with the cost of achieving it?
That's a smart consideration! While 100% accuracy sounds ideal, it's often costly and unrealistic. A better approach is to define acceptable thresholds through data validation rules and data profiling. By using observability platforms that support threshold-based alerts and dynamic thresholding, teams can focus on what matters most without over-investing in perfection.
Why is data observability gaining momentum now, even though software observability has been around for a while?
Great question! Software observability took off in the 2010s with the rise of cloud-native apps, but data observability is catching up fast. As businesses start treating data as a mission-critical asset—especially with the growth of AI and cloud data platforms like Snowflake—the need for real-time visibility, data reliability, and governance has become urgent. We're in the early innings, but the pace is accelerating quickly.
How did implementing a data observability platform impact Hypebeast’s operations?
After adopting Sifflet’s observability platform, Hypebeast saw a 204% improvement in data quality, a 178% increase in data product delivery, and a 75% boost in ad hoc request speed. These gains translated into faster, more reliable insights and better collaboration across departments.
How does Sifflet enhance data lineage tracking for dbt projects?
Sifflet enriches your data lineage tracking by visually mapping out your dbt models and how they connect across different projects. This is especially useful for teams managing multiple dbt repositories, as Sifflet brings everything together into a clear, centralized lineage view that supports root cause analysis and proactive monitoring.
What is data lineage and why is it important for data observability?
Data lineage is the process of tracing data as it moves from source to destination, including all transformations along the way. It's a critical component of data observability because it helps teams understand dependencies, troubleshoot issues faster, and maintain data reliability across the entire pipeline.
What kinds of metrics can retailers track with advanced observability tools?
Retailers can track a wide range of metrics such as inventory health, stock obsolescence risks, carrying costs, and dynamic safety stock levels. These observability dashboards offer time-series analysis and predictive insights that support better decision-making and improve overall data reliability.
What improvements has Sifflet made to incident management workflows?
We’ve introduced Augmented Resolution to help teams group related alerts into a single collaborative ticket, streamlining incident response. Plus, with integrations into your ticketing systems, Sifflet ensures that data issues are tracked, communicated, and resolved efficiently. It’s all part of our mission to boost data reliability and support your operational intelligence.
Can I trust the data I find in the Sifflet Data Catalog?
Absolutely! Thanks to Sifflet’s built-in data quality monitoring, you can view real-time metrics and health checks directly within the Data Catalog. This gives you confidence in the reliability of your data before making any decisions.













-p-500.png)
