Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How does Sifflet help with data freshness monitoring?
At Sifflet, we offer a powerful Freshness Monitor that tracks when your data arrives and alerts you if it's missing or delayed. Whether you're working with batch or streaming pipelines, our observability platform makes it easy to stay on top of data freshness and ensure your analytics stay accurate and timely.
Why is the new join feature in the monitor UI a game changer for data quality monitoring?
The ability to define joins directly in the monitor setup interface means you can now monitor relationships across datasets without writing custom SQL. This is crucial for data quality monitoring because many issues arise from inconsistencies between related tables. Now, you can catch those problems early and ensure better data reliability across your pipelines.
What is data ingestion and why is it so important for modern businesses?
Data ingestion is the process of collecting and loading data from various sources into a central system like a data lake or warehouse. It's the first step in your data pipeline and is critical for enabling real-time metrics, analytics, and operational decision-making. Without reliable ingestion, your downstream analytics and data observability efforts can quickly fall apart.
How can I prevent schema changes from breaking my data pipelines?
You can prevent schema-related breakages by using data observability tools that offer real-time schema drift detection and alerting. These tools help you catch changes early, validate against data contracts, and maintain SLA compliance across your data pipelines.
Why is data observability so important for AI and analytics initiatives?
Great question! Data observability ensures that the data fueling AI and analytics is reliable, accurate, and fresh. At Sifflet, we see data observability as both a technical and business challenge, which is why our platform focuses on data quality monitoring, anomaly detection, and real-time metrics to help enterprises make confident, data-driven decisions.
How does Sifflet use AI to enhance data observability?
Sifflet uses AI not just for buzzwords, but to genuinely improve your workflows. From AI-powered metadata generation to dynamic thresholding and intelligent anomaly detection, Sifflet helps teams automate data quality monitoring and make faster, smarter decisions based on real-time insights.
What can I expect to learn from Sifflet’s session on cataloging and monitoring data assets?
Our Head of Product, Martin Zerbib, will walk you through how Sifflet enables data lineage tracking, real-time metrics, and data profiling at scale. You’ll get a sneak peek at our roadmap and see how we’re making data more accessible and reliable for teams of all sizes.
Why is technology critical to scaling data governance across teams?
Technology automates key governance tasks such as data classification, access control, and telemetry instrumentation. With the right tools, like a data observability platform, organizations can enforce policies at scale, detect anomalies automatically, and integrate governance into daily workflows. This reduces manual effort and ensures governance grows with the business.
Still have questions?