


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Who should be the first hire on a new data team?
If you're just starting out, look for someone with 'Full Data Stack' capabilities, like a Data Analyst with strong SQL and business acumen or a Data Engineer with analytics skills. This person can work closely with other teams to build initial pipelines and help shape your data platform. As your needs evolve, you can grow your team with more specialized roles.
What are the five technical pillars of data observability?
The five technical pillars are freshness, volume, schema, distribution, and lineage. These cover everything from whether your data is arriving on time to whether it still follows expected patterns. A strong observability tool like Sifflet monitors all five, providing real-time metrics and context so you can quickly detect and resolve issues before they cause downstream chaos.
What should I look for when choosing a data observability platform?
Great question! When evaluating a data observability platform, it’s important to focus on real capabilities like root cause analysis, data lineage tracking, and SLA compliance rather than flashy features. Our checklist helps you cut through the noise so you can find a solution that builds trust and scales with your data needs.
How does Sifflet help with anomaly detection in data pipelines?
Sifflet uses machine learning to power anomaly detection across your data ecosystem. Instead of relying on static rules, it learns your data’s patterns and flags unusual behavior—like a sudden drop in transaction volume. This helps teams catch issues early, avoid alert fatigue, and focus on incidents that actually impact business outcomes. It’s data quality monitoring with real intelligence.
What are some key benefits of using an observability platform like Sifflet?
Using an observability platform like Sifflet brings several benefits: real-time anomaly detection, proactive incident management, improved SLA compliance, and better data governance. By combining metrics, metadata, and lineage, we help teams move from reactive data quality monitoring to proactive, scalable observability that supports reliable, data-driven decisions.
How does Sifflet help with data discovery across different tools like Snowflake and BigQuery?
Great question! Sifflet acts as a unified observability platform that consolidates metadata from tools like Snowflake and BigQuery into one centralized Data Catalog. By surfacing tags, labels, and schema details, it makes data discovery and governance much easier for all stakeholders.
Can I build custom observability dashboards using Sifflet data?
Absolutely! With Sifflet's Data Sharing, you can connect your favorite BI tools like Looker, Tableau, or Power BI to our shared tables. This lets you build tailored dashboards and reports using real-time metrics from your observability data, helping you track KPIs, monitor SLA compliance, and visualize trends across teams or domains.
What’s the best way to manage a data catalog over time?
To manage a data catalog effectively, assign clear ownership through data stewards, enforce consistent naming conventions, and schedule regular metadata reviews. For even more impact, connect it with your observability platform to monitor data quality and lineage in real time, ensuring your catalog stays accurate and actionable.













-p-500.png)
