Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What are Sentinel, Sage, and Forge, and how do they enhance data observability?
Sentinel, Sage, and Forge are Sifflet’s new AI agents designed to supercharge your data observability efforts. Sentinel proactively recommends monitoring strategies, Sage accelerates root cause analysis by remembering system history, and Forge guides your team with actionable fixes. Together, they help teams reduce alert fatigue and improve data reliability at scale.
What’s next for Sifflet’s metrics observability capabilities?
We’re expanding support to more BI and transformation tools beyond Looker, and enhancing our ML-based monitoring to group business metrics by domain. This will improve consistency and make it even easier for users to explore metrics across the semantic layer.
How does SQL Table Tracer handle different SQL dialects?
SQL Table Tracer uses Antlr4 with semantic predicates to support multiple SQL dialects like Snowflake, Redshift, and PostgreSQL. This flexible parsing approach ensures accurate lineage extraction across diverse environments, which is essential for data pipeline monitoring and distributed systems observability.
Why is an observability layer essential in the modern data stack, according to Meero’s experience?
For Meero, having an observability layer like Sifflet was crucial to ensure end-to-end visibility of their data pipelines. It allowed them to proactively monitor data quality, reduce downtime, and maintain SLA compliance, making it an indispensable part of their modern data stack.
What role does data ownership play in data quality monitoring?
Clear data ownership is a game changer for data quality monitoring. When each data product has a defined owner, it’s easier to resolve issues quickly, collaborate across teams, and build a strong data culture that values accountability and trust.
What are the five technical pillars of data observability?
The five technical pillars are freshness, volume, schema, distribution, and lineage. These cover everything from whether your data is arriving on time to whether it still follows expected patterns. A strong observability tool like Sifflet monitors all five, providing real-time metrics and context so you can quickly detect and resolve issues before they cause downstream chaos.
Can I monitor my BigQuery data with Sifflet?
Absolutely! Sifflet’s observability tools are fully compatible with Google BigQuery, so you can perform data quality monitoring, data lineage tracking, and anomaly detection right where your data lives.
What kind of data quality monitoring features does Sifflet Insights offer?
Sifflet Insights offers features like real-time alerts, incident tracking, and access to metadata through your Data Catalog. These capabilities support proactive data quality monitoring and streamline root cause analysis when issues arise.
Still have questions?