


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Why is data lineage tracking important in a data catalog solution?
Data lineage tracking is key to understanding how data flows through your systems. It helps teams visualize the origin and transformation of datasets, making root cause analysis and impact assessments much faster. For teams focused on data observability and pipeline health, this feature is a must-have.
What role does data lineage tracking play in data governance?
Data lineage tracking is essential for understanding where data comes from, how it changes, and where it goes. It supports compliance efforts, improves root cause analysis, and reduces confusion in cross-functional teams. Combined with data governance, lineage tracking ensures transparency in data pipelines and builds trust in analytics and reporting.
What benefits can I expect from using Sifflet with Google Cloud?
By combining Sifflet with Google Cloud, you get end-to-end cloud data observability, real-time metrics, and proactive monitoring across your data stack. It’s a powerful way to boost your data reliability and meet your SLA compliance goals.
What makes Etam’s data strategy resilient in a fast-changing retail landscape?
Etam’s data strategy is built on clear business alignment, strong data quality monitoring, and a focus on delivering ROI across short, mid, and long-term horizons. With the help of an observability platform, they can adapt quickly, maintain data reliability, and support strategic decision-making even in uncertain conditions.
How can I monitor the health of my ETL or ELT pipelines?
Monitoring pipeline health is essential for maintaining data reliability. You can use tools that offer data pipeline monitoring features such as real-time metrics, ingestion latency tracking, and pipeline error alerting. Sifflet’s pipeline health dashboard gives you full visibility into your ETL and ELT processes, helping you catch issues early and keep your data flowing smoothly.
Can Sifflet detect unexpected values in categorical fields?
Absolutely. Sifflet’s data quality monitoring automatically flags unforeseen values in categorical fields, which is a common issue for analytics engineers. This helps prevent silent errors in your data pipelines and supports better SLA compliance across your analytics workflows.
How does data observability support data governance and compliance?
If you're in a regulated industry or handling sensitive data, observability tools can help you stay compliant. They offer features like audit logging, data freshness checks, and schema validation, which support strong data governance and help ensure SLA compliance.
What is SQL Table Tracer and how does it help with data lineage tracking?
SQL Table Tracer (STT) is a lightweight library that automatically extracts table-level lineage from SQL queries. It identifies both destination and upstream tables, making it easier to understand data dependencies and build reliable data lineage workflows. This is a key component of any effective data observability strategy.













-p-500.png)
