Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How does data observability improve the value of a data catalog?
Data observability enhances a data catalog by adding continuous monitoring, data lineage tracking, and real-time alerts. This means organizations can not only find their data but also trust its accuracy, freshness, and consistency. By integrating observability tools, a catalog becomes part of a dynamic system that supports SLA compliance and proactive data governance.
Can Sifflet help with root cause analysis when there's a data issue?
Absolutely. Sifflet's built-in data lineage tracking plays a key role in root cause analysis. If a dashboard shows unexpected data, teams can trace the issue upstream through the lineage graph, identify where the problem started, and resolve it faster. This visibility makes troubleshooting much more efficient and collaborative.
Why is a centralized Data Catalog important for data reliability and SLA compliance?
A centralized Data Catalog like Sifflet’s plays a key role in ensuring data reliability and SLA compliance by offering visibility into asset health, surfacing incident alerts, and providing real-time metrics. This empowers teams to monitor data pipelines proactively and meet service level expectations more consistently.
How can organizations improve data governance with modern observability tools?
Modern observability tools offer powerful features like data lineage tracking, audit logging, and schema registry integration. These capabilities help organizations improve data governance by providing transparency, enforcing data contracts, and ensuring compliance with evolving regulations like GDPR.
Why is data observability essential when treating data as a product?
Great question! When you treat data as a product, you're committing to delivering reliable, high-quality data to your consumers. Data observability ensures that issues like data drift, broken pipelines, or unexpected anomalies are caught early, so your data stays trustworthy and valuable. It's the foundation for data reliability and long-term success.
How can I ensure SLA compliance during data integration?
To meet SLA compliance, it's crucial to monitor ingestion latency, data freshness checks, and throughput metrics. Implementing data observability dashboards can help you track these in real time and act quickly when something goes off track. Sifflet’s observability platform helps teams stay ahead of issues and meet their data SLAs confidently.
Why should data alerts live in ServiceNow?
If your team already uses ServiceNow for incident management, having your data alerts show up there means fewer missed issues and faster resolution times. It brings transparency to your data pipelines and supports better data governance and trust.
What future observability goals has Carrefour set?
Looking ahead, Carrefour plans to expand monitoring to more than 1,500 tables, integrate AI-driven anomaly detection, and implement data contracts and SLA monitoring to further strengthen data governance and accountability.
Still have questions?