Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How can organizations create a culture that supports data observability?
Fostering a data-driven culture starts with education and collaboration. Salma recommends training programs that boost data literacy and initiatives that involve all data stakeholders. This shared responsibility approach ensures better data governance and more effective data quality monitoring.
What is the Universal Connector and how does it support data pipeline monitoring?
The Universal Connector lets you integrate Sifflet with any tool in your stack using YAML and API endpoints. It enables full-stack data pipeline monitoring and data lineage tracking, even for tools Sifflet doesn’t natively support, offering a more complete view of your observability workflows.
Why is data observability important when using ETL or ELT tools?
Data observability is crucial no matter which integration method you use. With ETL or ELT, you're moving and transforming data across multiple systems, which can introduce errors or delays. An observability platform like Sifflet helps you track data freshness, detect anomalies, and ensure SLA compliance across your pipelines. This means fewer surprises, faster root cause analysis, and more reliable data for your business teams.
How does Sifflet’s observability platform help reduce alert fatigue?
We hear this a lot — too many alerts, not enough clarity. At Sifflet, we focus on intelligent alerting by combining metadata, data lineage tracking, and usage patterns to prioritize what really matters. Instead of just flagging that something broke, our platform tells you who’s affected, why it matters, and how to fix it. That means fewer false positives and more actionable insights, helping you cut through the noise and focus on what truly impacts your business.
What kind of monitoring capabilities does Sifflet offer out of the box?
Sifflet comes with a powerful library of pre-built monitors for data profiling, data freshness checks, metrics health, and more. These templates are easily customizable, supporting both batch data observability and streaming data monitoring, so you can tailor them to your specific data pipelines.
How does Sifflet support data lineage tracking and governance?
Sifflet’s unified data catalog and observability features bring context-rich insights into your data workflows. This integration enhances data lineage tracking and supports stronger data governance by giving teams a holistic view of how data flows and transforms across your systems.
Is this feature part of Sifflet’s larger observability platform?
Yes, dbt Impact Analysis is a key addition to Sifflet’s observability platform. It integrates seamlessly into your GitHub or GitLab workflows and complements other features like data lineage tracking and data quality monitoring to provide holistic data observability.
Can I use data monitoring and data observability together?
Absolutely! In fact, data monitoring is often a key feature within a broader data observability solution. At Sifflet, we combine traditional monitoring with advanced capabilities like data profiling, pipeline health dashboards, and data drift detection so you get both alerts and insights in one place.
Still have questions?