


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
How can data observability support a Data as a Product (DaaP) strategy?
Data observability plays a crucial role in a DaaP strategy by ensuring that data is accurate, fresh, and trustworthy. With tools like Sifflet, businesses can monitor data pipelines in real time, detect anomalies, and perform root cause analysis to maintain high data quality. This helps build reliable data products that users can trust.
Why did Adaptavist choose Sifflet over other observability tools?
Callum and his team were impressed by how quickly Sifflet’s cross-repo data lineage tracking gave them visibility into their pipelines. Within days, they had a working proof of concept and were debugging in minutes instead of days. The unified view across their stack made Sifflet the right fit for scaling data observability across teams.
Is this integration useful for teams focused on data governance and compliance?
Yes, it really is! With enhanced lineage and metadata tracking from source to destination, the Fivetran integration supports better data governance. It helps ensure transparency, traceability, and SLA compliance across your data ecosystem.
Why is data governance important when treating data as a product?
Data governance ensures that data is collected, managed, and shared responsibly, which is especially important when data is treated as a product. It helps maintain compliance with regulations and supports data quality monitoring. With proper governance in place, businesses can confidently deliver reliable and secure data products.
Is Sifflet available for VPC deployment on Google Cloud?
Yes it is! You can deploy Sifflet’s observability platform within your own private Google Cloud environment using VPC deployment, giving you full control over data governance and security.
Why are retailers turning to data observability to manage inventory better?
Retailers are adopting data observability to gain real-time visibility into inventory across all channels, reduce stock inaccuracies, and avoid costly misalignments between supply and demand. With data observability tools, they can proactively detect issues, monitor data quality, and improve operational efficiency across their data pipelines.
Why are traditional data catalogs no longer enough for modern data teams?
Traditional data catalogs focus mainly on metadata management, but they don't actively assess data quality or track changes in real time. As data environments grow more complex, teams need more than just an inventory. They need data observability tools that provide real-time metrics, anomaly detection, and data quality monitoring to ensure reliable decision-making.
Can MCP help with root cause analysis in data systems?
Absolutely. MCP gives LLMs the ability to retain memory across multi-step interactions and call external tools, which is incredibly useful for root cause analysis. At Sifflet, we use this to build agents that can pinpoint anomalies, trace data lineage, and surface relevant logs automatically.