


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
How does the checklist help with reducing alert fatigue?
The checklist emphasizes the need for smart alerting, like dynamic thresholding and alert correlation, instead of just flooding your team with notifications. This focus helps reduce alert fatigue and ensures your team only gets notified when it really matters.
What makes Sifflet's approach to data quality unique?
At Sifflet, we believe data quality isn't one-size-fits-all. Our observability platform blends technical robustness with business context, offering customized data quality monitoring that adapts to your specific use cases. This means you get both reliable pipelines and meaningful metrics that align with your business goals.
What does 'agentic observability' mean and why does it matter?
Agentic observability is our vision for the future — where observability platforms don’t just monitor, they act. Think of it as moving from real-time alerts to intelligent copilots. With features like auto-remediation, dynamic thresholding, and incident response automation, Sifflet is building systems that can detect issues, assess impact, and even resolve known problems on their own. It’s a huge step toward self-healing pipelines and truly proactive data operations.
Can I learn about real-world results from Sifflet customers at the event?
Yes, definitely! Companies like Saint-Gobain will be sharing how they’ve used Sifflet for data observability, data lineage tracking, and SLA compliance. It’s a great chance to hear how others are solving real data challenges with our platform.
How does Sifflet support data quality monitoring?
Sifflet makes data quality monitoring seamless with its auto-coverage feature. It automatically suggests fields to monitor and applies rules for freshness, uniqueness, and null values. This proactive monitoring helps maintain SLA compliance and keeps your data assets trustworthy and safe to use.
What non-quantifiable benefits can data observability bring to my organization?
Besides measurable improvements, data observability also boosts trust in data, enhances decision-making, and improves the overall satisfaction of your data team. When your team spends less time debugging and more time driving value, it fosters a healthier data culture and supports long-term business growth.
What role does Sifflet play in Etam’s data governance efforts?
Sifflet supports Etam by embedding data governance into their workflows through automated monitoring, anomaly detection, and data lineage tracking. This gives the team better visibility into their data pipelines and helps them troubleshoot issues quickly without slowing down innovation.
Can data lineage help with regulatory compliance such as GDPR?
Absolutely. Data lineage supports data governance by mapping data flows and access rights, which is essential for compliance with regulations like GDPR. Features like automated PII propagation help teams monitor sensitive data and enforce security observability best practices.













-p-500.png)
