


Discover more integrations
No items found.
Get in touch CTA Section
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Frequently asked questions
Why does AI often fail even when the models are technically sound?
Great question! AI doesn't usually fail because of bad models, but because of unreliable data. Without strong data observability in place, it's hard to detect data issues like schema changes, stale tables, or broken pipelines. These problems undermine trust, and without trust in your data, even the best models can't deliver value.
How is Etam using data observability to support its 2025 strategy?
Etam is leveraging data observability as a foundational element of its 2025 data strategy. With Sifflet’s observability platform, the team can monitor data quality, detect issues early, and ensure data reliability, which helps them move faster and with more confidence across the business.
How does Sifflet support diversity and innovation in the data observability space?
Diversity and innovation are core values at Sifflet. We believe that a diverse team brings a wider range of perspectives, which leads to more creative solutions in areas like cloud data observability and predictive analytics monitoring. Our culture encourages experimentation and continuous learning, making it a great place to grow.
Can MCP help with root cause analysis in data systems?
Absolutely. MCP gives LLMs the ability to retain memory across multi-step interactions and call external tools, which is incredibly useful for root cause analysis. At Sifflet, we use this to build agents that can pinpoint anomalies, trace data lineage, and surface relevant logs automatically.
How does Sifflet help with monitoring data distribution?
Sifflet makes distribution monitoring easy by using statistical profiling to learn what 'normal' looks like in your data. It then alerts you when patterns drift from those baselines. This helps you maintain SLA compliance and avoid surprises in dashboards or ML models. Plus, it's all automated within our data observability platform so you can focus on solving problems, not just finding them.
Why is an observability layer essential in the modern data stack, according to Meero’s experience?
For Meero, having an observability layer like Sifflet was crucial to ensure end-to-end visibility of their data pipelines. It allowed them to proactively monitor data quality, reduce downtime, and maintain SLA compliance, making it an indispensable part of their modern data stack.
What’s the best way to manage a data catalog over time?
To manage a data catalog effectively, assign clear ownership through data stewards, enforce consistent naming conventions, and schedule regular metadata reviews. For even more impact, connect it with your observability platform to monitor data quality and lineage in real time, ensuring your catalog stays accurate and actionable.
Why is data observability gaining momentum now, even though software observability has been around for a while?
Great question! Software observability took off in the 2010s with the rise of cloud-native apps, but data observability is catching up fast. As businesses start treating data as a mission-critical asset—especially with the growth of AI and cloud data platforms like Snowflake—the need for real-time visibility, data reliability, and governance has become urgent. We're in the early innings, but the pace is accelerating quickly.













-p-500.png)
