Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What makes data observability different from traditional monitoring tools?
Traditional monitoring tools focus on infrastructure and application performance, while data observability digs into the health and trustworthiness of your data itself. At Sifflet, we combine metadata monitoring, data profiling, and log analysis to provide deep insights into pipeline health, data freshness checks, and anomaly detection. It's about ensuring your data is accurate, timely, and reliable across the entire stack.
How is data volume different from data variety?
Great question! Data volume is about how much data you're receiving, while data variety refers to the different types and formats of data sources. For example, a sudden drop in appointment data is a volume issue, while a new file format causing schema mismatches is a variety issue. Observability tools help you monitor both dimensions to maintain healthy pipelines.
What makes Sifflet's architecture unique for secure data pipeline monitoring?
Sifflet uses a cell-based architecture that isolates each customer’s instance and database. This ensures that even under heavy usage or a potential breach, your data pipeline monitoring remains secure, reliable, and unaffected by other customers’ activities.
How does Sifflet help with SLA compliance and incident response?
Sifflet supports SLA compliance by offering intelligent alerting, dynamic thresholding, and real-time dashboards that track incident metrics and resolution times. Its data reliability dashboard gives teams visibility into SLA adherence and helps prioritize issues based on business impact, streamlining incident management workflows and reducing mean time to resolution.
Why is data observability becoming more important than just monitoring?
As data systems grow more complex with cloud infrastructure and distributed pipelines, simple monitoring isn't enough. Data observability platforms like Sifflet go further by offering data lineage tracking, anomaly detection, and root cause analysis. This helps teams not just detect issues, but truly understand and resolve them faster—saving time and avoiding costly outages.
How does a data catalog improve data reliability and governance?
A well-managed data catalog enhances data reliability by capturing metadata like data lineage, ownership, and quality indicators. It supports data governance by enforcing access controls and documenting compliance requirements, making it easier to meet regulatory standards and ensure trustworthy analytics across the organization.
What role does technology play in supporting data team well-being?
The right technology can make a big difference. Adopting observability tools that offer features like data lineage tracking, data freshness checks, and pipeline health dashboards can reduce manual firefighting and help your team work more autonomously. This not only improves productivity but also makes day-to-day work more enjoyable.
How does Flow Stopper improve data reliability for engineering teams?
By integrating real-time data quality monitoring directly into your orchestration layer, Flow Stopper gives Data Engineers the ability to stop the flow when something looks off. This means fewer broken pipelines, better SLA compliance, and more time spent on innovation instead of firefighting.
Still have questions?