Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

How does Flow Stopper improve data reliability for engineering teams?
By integrating real-time data quality monitoring directly into your orchestration layer, Flow Stopper gives Data Engineers the ability to stop the flow when something looks off. This means fewer broken pipelines, better SLA compliance, and more time spent on innovation instead of firefighting.
Can data lineage help with regulatory compliance such as GDPR?
Absolutely. Data lineage supports data governance by mapping data flows and access rights, which is essential for compliance with regulations like GDPR. Features like automated PII propagation help teams monitor sensitive data and enforce security observability best practices.
What’s the first step when building a modern data team from scratch?
The very first step is to set clear objectives that align with your company’s level of data maturity and business needs. This means involving stakeholders from different departments and deciding whether your focus is on exploratory analysis, business intelligence, or innovation through AI and ML. These goals will guide your choices in data stack, platform, and hiring.
What’s coming next for the Sifflet AI Assistant?
We’re excited about what’s ahead. Soon, the Sifflet AI Assistant will allow non-technical users to create monitors using natural language, expand monitoring coverage automatically, and provide deeper insights into resource utilization and capacity planning to support scalable data observability.
Is data governance more about culture or tools?
It's a mix of both, but culture plays a big role. As Dan Power puts it, 'culture eats strategy for breakfast.' Even the best observability tools won't succeed without enterprise-wide data literacy and buy-in. That’s why training, user-friendly platforms, and fostering collaboration are just as important as the technology stack you choose.
What makes Sifflet’s approach to anomaly detection more reliable than traditional methods?
Sifflet uses intelligent, ML-driven anomaly detection that evolves with your data. Instead of relying on static rules, it adjusts sensitivity and parameters in real time, improving data reliability and helping teams focus on real issues without being overwhelmed by alert fatigue.
Why is data observability becoming so important for businesses in 2025?
Great question! As Salma Bakouk shared in our recent webinar, data observability is critical because it builds trust and reliability across your data ecosystem. With poor data quality costing companies an average of $13 million annually, having a strong observability platform helps teams proactively detect issues, ensure data freshness, and align analytics efforts with business goals.
How does Sifflet support data quality monitoring?
Sifflet makes data quality monitoring seamless with its auto-coverage feature. It automatically suggests fields to monitor and applies rules for freshness, uniqueness, and null values. This proactive monitoring helps maintain SLA compliance and keeps your data assets trustworthy and safe to use.
Still have questions?