Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

What is data distribution deviation and why should I care about it?
Data distribution deviation happens when the distribution of your data changes over time, either gradually or suddenly. This can lead to serious issues like data drift, broken queries, and misleading business metrics. With Sifflet's data observability platform, you can automatically monitor for these deviations and catch problems before they impact your decisions.
What kind of real-time alerts can I expect with Sifflet and dbt together?
With Sifflet and dbt working together, you get real-time alerts delivered straight to your favorite tools like Slack, Microsoft Teams, or email. Whether a dbt test fails or a data anomaly is detected, your team will be notified immediately, helping you respond quickly and maintain data quality monitoring at all times.
What makes Sifflet stand out from other data observability platforms?
Great question! Sifflet stands out through its fast setup, intuitive interface, and powerful features like Field Level Lineage and auto-coverage. It’s designed to give you full data stack observability quickly, so you can focus on insights instead of infrastructure. Plus, its visual data volume tracking and anomaly detection help ensure data reliability across your pipelines.
What role did data observability play in improving Meero's data reliability?
Data observability was key to Meero's success in maintaining reliable data pipelines. By using Sifflet’s observability platform, they could monitor data freshness, schema changes, and volume anomalies, ensuring their data remained trustworthy and accurate for business decision-making.
What kinds of metrics can retailers track with advanced observability tools?
Retailers can track a wide range of metrics such as inventory health, stock obsolescence risks, carrying costs, and dynamic safety stock levels. These observability dashboards offer time-series analysis and predictive insights that support better decision-making and improve overall data reliability.
What does the Sifflet and Google Cloud partnership mean for users?
Great question! This partnership allows Google Cloud users to integrate Sifflet’s data observability platform directly within their private cloud environment. That means better visibility, reliability, and trust in your data from ingestion all the way to analytics.
Is Sifflet's Data Sharing compatible with cloud data platforms like Snowflake or BigQuery?
Yes, it is! Sifflet currently supports Data Sharing to Snowflake, BigQuery, and S3, with more destinations on the way. This makes it easy to integrate Sifflet into your cloud data observability strategy and leverage your existing infrastructure for deeper insights and proactive monitoring.
Can Sifflet support SLA compliance and data governance goals?
Absolutely! Sifflet supports SLA compliance through proactive data quality monitoring and real-time metrics. Its deep metadata integrations and lineage tracking also help organizations enforce data governance policies and maintain trust across the entire data ecosystem.
Still have questions?