Discover more integrations

No items found.

Get in touch CTA Section

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Frequently asked questions

Why is table-level lineage important for data quality monitoring and governance?
Table-level lineage helps you understand how data flows through your systems, which is essential for data quality monitoring and data governance. It supports impact analysis, pipeline debugging, and compliance by showing how changes in upstream tables affect downstream assets.
How do declared assets improve data quality monitoring?
Declared assets appear in your Data Catalog just like built-in assets, with full metadata and business context. This improves data quality monitoring by making it easier to track data lineage, perform data freshness checks, and ensure SLA compliance across your entire pipeline.
What can I expect to learn from Sifflet’s session on cataloging and monitoring data assets?
Our Head of Product, Martin Zerbib, will walk you through how Sifflet enables data lineage tracking, real-time metrics, and data profiling at scale. You’ll get a sneak peek at our roadmap and see how we’re making data more accessible and reliable for teams of all sizes.
What does it mean to treat data as a product?
Treating data as a product means managing data with the same care and strategy as a traditional product. It involves packaging, maintaining, and delivering high-quality data that serves a specific purpose or audience. This approach improves data reliability and makes it easier to monetize or use for strategic decision-making.
Can observability platforms help AI systems make better decisions with data?
Absolutely. AI systems need more than just schemas—they need context. Observability platforms like Sifflet provide machine-readable trust signals, data freshness checks, and reliability scores through APIs. This allows autonomous agents to assess data quality in real time and make smarter decisions without relying on outdated documentation.
What can I expect from Sifflet at Big Data Paris 2024?
We're so excited to welcome you at Booth #D15 on October 15 and 16! You’ll get to experience live demos of our latest data observability features, hear real client stories like Saint-Gobain’s, and explore how Sifflet helps improve data reliability and streamline data pipeline monitoring.
What should I look for when choosing a data observability platform?
Great question! When evaluating a data observability platform, it’s important to focus on real capabilities like root cause analysis, data lineage tracking, and SLA compliance rather than flashy features. Our checklist helps you cut through the noise so you can find a solution that builds trust and scales with your data needs.
What role does MCP play in improving incident response automation?
MCP is a game-changer for incident response automation. By allowing LLMs to interact with telemetry data, call remediation tools, and maintain context over time, MCP enables proactive monitoring and faster resolution. This aligns perfectly with Sifflet’s mission to reduce downtime and improve pipeline resilience.
Still have questions?